ARI The Bulletin of the Istanbul Technical University
Communicated by A. Nihat Berker

VOLUME 53, NUMBER 1

Entropic Competition between Knots and Slip-Links

Roya Zandi
Department of Chemistry and Biochemistry, UCLA, Box 951569, Los Angeles, California, 90095-1569
Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02159, U.S.A
Yacov Kantor
School of Physics and Astronomy, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv
University, Tel Aviv 69978, Israel
Mehran Kardar
Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02159, U.S.A
(Received 10 June 2003)

Using canonical Monte Carlo simulations, we introduce a new numerical procedure for comparing the entropic
exponents of polymers with different constraints and/or topologies. Setting up competitions between polymer
segments which can exchange monomers according to their free energies, we obtain the universal exponents of
partition functions, independently of any knowledge of the non-universal part. The method is successfully tested
for closed polymer loops decorated with sliding rings. We also investigate the entropic exponents of loops with a
fixed knot type, in which case we are limited by strong finite—size effects.
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1. Introduction and Summary

A long flexible polymer chain can assume an
enormous number of configurations; thus, the
conformations of polymers are best described sta-
tistically. Despite the microscopic distinctions
which exist among different polymers, at large
length scales many generic properties are inde-
pendent of the details of specific polymer struc-
ture and thus are “universal.” [1] The understand-
ing and characterization of this universal behav-
ior has led to great advances in the statistical
treatment of polymers. Polymers in good sol-
vents have been modeled by self-avoiding walks
(SAWSs), which are in turn mapped to a magnetic
system at its critical point [1]. Renormalization
group techniques then allow a variety of poly-
mer properties to be calculated analytically[1, 2].
On the experimental front, advances in manipu-
lation and imaging of single molecules have pro-
vided new impetus for studies of polymers [3].
With these micromanipulation techniques, it is
now possible to explore a wide variety of physical
properties of polymers, and thus to test models
and theoretical predictions at the level of a single
chain.

In many circumstances, the number of config-
urations of a polymer grows with its length ¢, as

w(l) ~ Aptec 1+ B2 +--1]. (1)

In the above equation, the connectivity constant
1, is a non-universal quantity which depends on
the microscopic features of the chain, but (like a
free energy density) remains the same for differ-
ent boundary and topological constraints[1]. By
contrast, ¢ is a universal exponent, which is inde-
pendent of the microscopic characteristics of the
polymer, but which does depend on the dimen-
sionality, and on global boundary and topolog-
ical constraints. For example, in the case of a
closed loop, ¢ = dv, where d is the dimensionality
of space, and v is the exponent relating the typ-
ical spatial extent of a polymer to its length by
R ~ ¢¥. (Ind = 3, for polymers with self-avoiding
interactions v & 0.588[1, 4].) In Eq. (1), we have
anticipated subleading corrections to the leading
asymptotic behavior at large ¢, indicated by so-
called corrections to scaling in the square brack-
ets. Renormalization group calculations suggest
that the exponent A is universal, while the am-
plitude B is case-specific[2].

Numerical determination of a power-law cor-
rection to the leading exponential behavior is
rather cumbersome. It is usually accomplished
by examining a generating function f(z) =
> 9w (f)z*, with a conveniently chosen value of
the free parameter g. The function f(z) is usu-
ally singular at z = 1/p [5], and the details of this
singularity determine the exponent ¢ appearing in
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Eq. 1. This can be done either by examining a
finite amount of terms in series expansions, using
w(f) extracted from exact enumeration studies, or
by performing grand-canonical Monte Carlo(MC)
studies of the polymer with weight determined by
092¢ for several values of z, as was done in Refs.
[6, 7].

Here, we propose a method for calculating the
universal exponent ¢ in the number of configura-
tions, without the need to account for the leading
non-universal exponential growth uf. Our proce-
dure is best suited for the evaluation of the expo-
nent ¢ when the polymer is constrained in various
manners, a situation that occurs physically when
a polymer can move from one regime to another.
Using canonical Monte Carlo simulations, we di-
rectly compare the relative number of configura-
tions by setting up an ensemble in which two seg-
ments of a polymer can exchange monomers. A
pair of monomers belonging to two different seg-
ments does not interact, while the monomers in
the same segment repel each other. Each segment
is subject to its own set of global constraints. The
total number of monomers is fixed to L, while in
any given configuration the two segments have ¢
and L — ¢ monomers, respectively. According to
Eq. (1), in the asymptotic limit, the number of
configurations of such a system is

w(t,L) = A= (L — 0)=°2, 2)

where ¢; and ¢y are the exponents characterizing
each segment; the prefactor A is independent of
£. Assuming that the asymptotic limit has been
reached, fitting the histogram of ¢ should provide
the exponents ¢; and cs.

This method, which we call “entropic competi-
tion,” can in principle be applied to several phys-
ical circumstances, some of which are depicted
in Fig. 1. For example, one can extract the en-
tropic exponents of linear chains by threading
them through a hole, and making the first and
last monomers of the chain bigger than the size
of the hole such that the chain can diffuse back
and forth without wandering away (Fig. 1la). A
key point in this set-up is that the two parts of the
chain are not allowed to interact with each other.
By examining the probability of having a segment
of size £, which is proportional to £*~!(L —£)7~1,
one can extract the entropic exponent of linear
chains, known as « [8]. If, instead of threading
a chain through a hole, we divide the chain into
two parts by a rigid wall and let the two parts

(e)

Figure 1. Examples of possible applications of “en-
tropic competition:” (The universal power-law expo-
nents depend on the boundary condition of the sys-
tem.) (a) is appropriate for calculation of the expo-
nent + which describes open linear polymers. Note
that the two segments of the chain do not interact
with each other. (b) is good for calculation of the
exponent v1, (c) for a wedge, (d) for exponent 711,
and (e) for a chain attached at one end to the interior
surface of a sphere.

of the chain exchange monomers at the wall (a
process called translocation), we can extract the
entropic exponent which is called v, [8] (Fig. 1b).
Other potential applications are to the calcula-
tion of entropic exponents of linear polymers in
the presence of a wedge, or inside a spherical shell
(Figs. 1(c, e)). The latter case is particularly rel-
evant to the translocation of DNA through spher-
ical capsids and has been the subject of intense
research[9]. “Entropic competition” is especially
appropriate for calculation of the entropic expo-
nent 11, related to the polymers with two ends
anchored to a surface [8]. In this case, by fixing
one monomer of a ring on a wall and letting the
two segments of the ring on the two sides of the
wall exchange monomers with each other at any
point on the wall, we can extract the entropic
exponents of chains with two ends restricted to
move on a surface (Fig. le). The latter is of
renewed interest due to potential relevance to a
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new class of phy S
copolymers anchored to fluid membranes at each
end [10].

The calculation of entropic exponents using
“entropic competition” is not solely restricted to
open polymers. One can divide a ring into two
loops with the use of a ‘hole’ connecting two sep-
arate spaces, and a monomer which is fixed in
position, as illustrated in Fig. 2. In Sec.2 we
employ this system to calculate the probability
distribution of two non-interacting self-avoiding
(SA) loops of lengths £ and L — ¢, which can freely
exchange monomers. If the two polymer segments
have the same topology and boundary conditions,
as in the aforementioned case, then the exponents
¢1 and ¢y of Eq. (2) are equal and one can directly
find the entropic exponents by fitting the proba-
bility distributions resulting from simulations to
Eq. (2).

The entropic exponent can in fact be modified
in a systematic manner by decorating polymer
loops with sliding rings. We investigate the effect
of sliding rings on the number of configurations of
closed chains in Sec. 3. We assume that the size
of a ring is the same as that of one monomer. In
this situation, the presence of a ring increases the
number of configurations of the loop by a factor of
¢ (the number of monomers on the loop where the
ring can slide). Once again we examine the accu-
racy of “entropic competition” by comparing the
results of the simulations with analytical expec-
tations, and find an excellent agreement between
them.

Introduction of the “entropic competition”
method was motivated by its potential applica-
tion to knots. The influence of a knot on the en-
tropy of polymers has been the subject of interest
for some time [6, 7, 11, 12]. In Sec. 4 we study
knotted polymers. We overview the current hy-
pothesis regarding the number of configurations
of a knotted polymer. We numerically study sev-
eral related models and observe that the presence
of knots changes the number of configurations.
Furthermore, we numerically calculate the prob-
ability distribution of two loops with one trefoil
knot on each side and find that it is completely
different from that of two loops with one ring on
each side. This may well be an indication of the
importance of finite-size effects in knots, as the
two cases are conjectured to be similar in the limit
of very long chains.

Finally, in Sec. 5, we observe the “competition”

Figure 2. A schematic depiction of two loops in com-
petition. Sides (a) and (b) do not interact with each
other. The position of one bead is always fixed (the
one with X inside). The oval ring shows the posi-
tion of the ‘hole’ separating the spaces in which the
segments exist.

between a knot and rings by placing a knot on
one loop and rings on the other loop. In our sim-
ulations, the knot pulls the chain much harder
than a single ring, possibly due to finite-size ef-
fects. For polymers in the range of a few hundred
monomers, roughly six rings are needed to “com-
pete” with a simple trefoil knot. We attempt to
quantify this finite knot-size effect.

In the absence of an exact statistical treat-
ment of knotted polymers, several researchers
have employed ‘slip-links’ for gaining analytical
insights on topological constraints[12, 13]. Slip-
links can be envisioned as belt-buckles which
force two points of the chain to be close to each
other. Para-knots are collections of such slip-
links, and have been proposed as means of design-
ing entropy-driven functional molecules which are
linked to each other mechanically rather than
chemically[14]. In Sec. 5, we also employ a para-
knot model to explore the effects of a sub-leading
scale on entropic competition.

2. Method

We start by calculating the entropic exponents
of a closed loop. Our model polymer consists of L
hard spheres of diameter D connected into a chain
by tethers which have no additional energy cost
[15], but restrict the distance between connected
spheres to be smaller than 1.2D; this prevents
the chain from crossing itself. Figure 2 provides
a schematic depiction of the simulation: Solid cir-
cles represent monomers of the chain; the position
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of one monomer (labeled with an X) is fixed in
space, and the chain is forced to pass through a
hole which is depicted by an oval ring in Fig. 2.
The effect of the hole combined with the fixed
monomer is to create two loops of lengths ¢ and
L — {. The two loops do not interact with each
other: as soon as a monomer passes through the
hole, it ceases to interact with the monomers of its
previous side and starts to interact with the ones
in the new side. In order to preserve the topology
of each loop, we allow the monomers immediately
adjacent to the hole on either side to interact with
each other, and also allow the fixed monomer to
interact with all the other monomers. It is also
necessary to keep the hole narrow enough not to
let knots pass through it (for later applications).
The hole creates a barrier which slows down the
process of transferring the chain from one side to
the other one. In fact, this entropic barrier is the
major obstacle to the computation of the proba-
bility distribution of long chains (L > 300) within
a reasonable amount of CPU time. Obviously,
this barrier depends on the entropic exponents,
and is less significant for a hole on a rigid wall.
In calculating the exponent 711 [8], we remove the
entropic barrier (hole) completely; the two seg-
ments on the two sides of the wall can exchange
monomers at any point on the wall (Fig. 1e). In
this case, we let the monomers pass through the
wall only based on their order along the chain,
i.e., monomer n can pass through the wall, only
if monomer n — 1 has already moved to the other
side of the wall.

The number of configurations of the system de-
picted in Fig. 2 is the product of number of
configurations of each loop, and thus scales as

woo(l, L — 0) = Apl =4 x (L — ¢)~4, (3)

where £ is the number of monomers in one of the
loops. (The absence of a knot or ring on each
loop is denoted by the index pair 00.) Note that
the p does not affect the /-dependence, and shall
in fact be ignored henceforth. Although the pas-
sage through a worm-hole may appear unphysi-
cal in this context, our simulations produce the
correct results for the two non-interacting self-
avoiding loops which exchange monomers. Fig-
ure 3 shows the probability distribution for the
segment length £. The dots are the result of the
simulation for 10° MC steps [16]. The solid line
corresponds to the Eq. (3) with » = 0.588 at
d = 3. The graphs in this figure and all the other

w(¢,L)
0.12
0.1
0.08
0.06
0.04
0.02f

20 40 60 80 100

Figure 3. Probability distribution for two loops ex-
changing monomers. The dots are the results of the
simulation for 10° MC steps, with L = 100. The
graphs are normalized such that the integrated weight
is equal to one.

figures are normalized such that the integrated
weight is equal to one. The good match of simu-
lation with Eq. (3) confirms that our method for
computing the probability distribution is accu-
rate. Similar curves were produced through sim-
ulations for chains with different sizes L = 50,
L =150, and L = 200; all follow Eq. (3).

3. Sliding Rings

To further examine the validity of our method,
in this section we present results of simulations
including sliding rings. For each configuration of
a loop of length /7, a sliding ring can occupy /
different positions, and thus the probability dis-
tribution of such a loop scales as, w; ~ fwy ~
pte=v4+1 In simulations, the passage of a chain
through the hole is stopped if a ring is placed ex-
actly on the monomer entering the pore. Instead
of simulating a “real” sliding ring, we calculate
the probability that a ring might be sitting adja-
cent to the hole and then prevent the chain from
passing through the hole with this probability. If
we have one ring, the probability of the ring to be
exactly on the monomer entering the hole is 1/¢.
In case of many rings, this probability goes up.

We start by placing a ring on one of the loops
of Fig. 2 and then we measure the histogram of
lengths. Figure 4 shows the probability distribu-
tion of the loop side with one sliding ring. The in-
creased entropy of the segment on which the ring
is sliding biases the amount of time monomers
spend on that side. The solid line in Fig. 4 corre-
sponds to wyg (¢, L) = Al/(£*75(L — £)'-75). Note
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that this functional form is still singular at £ — 0,
although the singularity is weakened compared to
the case without the sliding ring. This singular-
ity is not visible in Fig. 2, presumably due to the
short size of the simulated chains.

The entropic effects can be increased even fur-
ther by placing more sliding rings on the loops of
Fig. 2. The presence of n sliding-rings on a loop
enhances the number of configurations to

2!

The side with the larger number of sliding rings is
expected to dominate in a competition. Figure 5
shows the probability distribution when we have
one ring on each side. The solid line in Fig. 5
corresponds to the formula,

Wpn (€, L) =

(L - 0)!
A(Z—n)!(L—Z_n)wl.w(L_2)1.76 J (5)

with n = 1. The dots on the figures are the result
of a simulation of 10° MC steps. Similar results
have been observed for chains with sizes L = 50,
150, and 200. The corresponding results with two
rings on each side are shown in Fig. 6; the solid
line represents Eq. (5) with n = 2. Note the dra-
matic difference between the shapes of these two
figures: with one ring on each side the distribu-
tion is peaked (in fact singular) at the two ex-
tremes, while for n = 2, the maximum has moved
to the center. This trend becomes even more pro-
nounced in Fig. 7 which illustrates the case with
n = 4. Clearly, increasing the number of rings
results in a probability distribution which peaks
more sharply in the middle. The solid line in
Fig. 7 again represents Eq. (5) with n = 4. The
good matches between the probability distribu-
tions obtained in simulations, and Eq. (5) for dif-
ferent numbers of rings n lend further credence
to the validity of our method.

4. Knots

4.1. Background

We are now in position to apply the entropic
competition method to the more complicated
problem of knots. Knots frequently appear in
closed polymers and play a major role in nu-
merous biological systems. For example, during
transcription of DNA, a variety of “de-knotting”
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Figure 4. Probability distribution of the size ¢ of
a loop with one sliding ring, in competition with a
simple loop. The dots are the result of a simulation
with over 10° MC steps for L = 50.
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Figure 5. Probability distribution of length for two
loops with one ring on each side (L = 100).
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Figure 6. Probability distribution for two loops with
two rings on each side (L = 100).
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cal properties of knotted polymers remains rudi-
mentary. This is due to the difficulty of incor-
porating topological constraints in the analytical
treatments of the statistics of polymers, as math-
ematical methods of knot detection are mainiy of
“algorithmic” nature.[26]. This complexity has
encouraged the use of Monte Carlo simulations,
such as the one reported here.

4.2. Competing knots
How does the altered topology of a closed curve

Figure 7. Probability distribution for two loops with
four rings on each side (L = 100).

enzymes remove knots

and entanglements to allow this process to go
forward[17, 18]. Understanding of the action of
these enzymes has been improved with the help
of knot theory. Knotted configurations have also
been observed in some proteins and interfere with
their folding into the proper shapes and thus
lead to diseases, such as Alzheimer’s and pri-
mary amyloidosis[19]. While knotted configura-
tions hamper the proper functioning of a num-
ber of biological and chemical systems, they have
crucial and positive roles in many others. The
tertiary structure of RNA is an example in which
the topological entanglements may have positive
influences. There has been extensive research
on predicting and understanding the relation be-
tween structure and function in RNA [20]. The
folded structure of some types of RNA molecules
(Ribozymes) determine their catalytic activities
which are crucial to the functioning of the cell[17].
Pseudo-knots, which are formed by base pairing
between a loop and some region outside the loop,
have been found in various kinds of RNAs and are
recognized as simple RNA folding motifs[21]. A
more physical example is provided by permanent
entanglements in rubber, which restrict the num-
ber of allowed configurations of each segment, and
thus influence the elasticity of rubber[22].

On the experimental front, artificial knots have
been tied on both DNA and actin filaments [23],
and the first Borromean DNA rings have also
been assembled[24]. Single molecule techniques
have provided a powerful tool to examine a wide
variety of physical properties of knotted poly-
mers [25]. Despite all this progress, our knowl-
edge about the typical conformations and physi-

called topoisomerases,

11

with a knot modify the number of available con-
figurations? To investigate this issue, Orlandini
et al.[6] performed grand canonical Monte Carlo
simulations of SA polygons with a fixed knot type
K. In these simulations the length of the chain is
not fixed, but the set of allowed moves is such that
the topology of the chain is preserved. Orlandini
et al. conjectured that the number of configu-
rations of knotted loops takes the same general
form as Eq. (1), asymptotically behaving as

=3, (6)
with parameters that may depend on the knot
type K. Assuming this form, one can find an
expression for the mean length (n(K)), a quan-
tity that can be measured in the grand canoni-
cal simulations. Fitting the simulation data for
(n(K))™", and extrapolating the results to the
limit of infinite size, Orlandini et al. can esti-
mate the parameters in Eq. (6). In particular
they confirm that that the effective growth con-
stant px is independent of the knot type. As-
suming that this is the case, they then conclude
that the universal power-law exponents behave as
a(K) = a(0) + Ny, where @ refers to a simple loop
(unknot), while Ny is the number of prime fac-
tors in the knot type K. Such a conclusion has
a simple and elegant interpretation: each prime
factor of the knot becomes a tight element that
incorporates an asymptotically small fraction of
the monomers. The tight factors can occupy any
position along the remaining large loop, each in-
creasing the number of configurations by a factor
of roughly the size of the loop, much like the slid-
ing rings discussed in the previous section.

If a prime knot, such as a trefoil, increases the
number of configurations of the closed polymer by
the same factor as a sliding ring, the two should
behave similarly in the arena of “entropic compe-
tition.” Indeed a knotted loop added to one side
of Fig. 2 pulls the entire chain on its side as in

wic ~ A}Cu%éa
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Figure 8. Probability distribution for two loops with
one knot on each side (L = 100).

Fig. 4. However, when we place one trefoil knot
on each of the loops, the resulting segment dis-
tribution, as plotted in Fig. 8 is qualitatively dif-
ferent from the curve found when a sliding ring
appears on each side (Fig. 5). The distribution

T in T

Log(w(¢,L)fw(L{2,L))

0.2 0.4

Figure 9. A logarithmic plot of probability density
for two loops with one knot on each side for N = 50
(square), 100 (dashed line), 150 (dots), and 200 (solid
line). The graphs were vertically displaced to coin-
cide at ¢/L = 0.5. As L increases, the distributions
become wider.

the hypothesis of a tight knot[6, 27, 12] suggests
that the trefoil should be well matched to a sin-

for the competing knots is peaked at the center,
much like cases with more than one sliding ring
on each side. The solid line in Fig. 5 in fact rep-
resents Eq. (5) with n = 4. We do not suggest
that the trefoil is asymptotically similar to four
rings, but that this is a good effective description
of a trefoil knot with a few hundred monomers.
To obtain more insight on finite-size effects, we
compare the probability distributions of knotted
loops with different sizes ranging from L = 50 to
L = 200.

Figure 9 shows the logarithmic plot of rescaled
probability densities for NV = 50, 100, 150, and
200, as a function of /L. The y coordinates are
shifted so that the maxima of distributions for
all sizes coincide. We note that the maximum
becomes flatter upon increasing L. The lack of
data collapse is a clear indication of finite-size ef-
fects. To check this, we performed similar simu-
lations with four rings on each side with chains
of lengths L = 50 through L = 200. In contrast
to knots (Fig. 9), we observed that all rescaled
curves collapsed in this case.

5. Knots versus Rings

In order to compare the relative “strengths” of
knots and rings in increasing the number of con-
figurations, we performed several simulations in
which we pitted a trefoil knot against different
numbers of rings, as depicted in Fig. 10. While

12

gle ring, in our simulations with chains of 100
monomers, we find that around 6 rings are neces-
sary to prevent the chain from being pulled com-
pletely to the side with the trefoil. Part of this
effect is no doubt due to the size of the knot: even
in its most compact form the trefoil knot involves
around 14 monomers, while the sliding ring is as-
sumed to occupy only one. In actuality, even a
‘tight knot’ will most likely be considerably big-
ger than the minimal size, with typical sizes that
grow with the length of the chain[28]. To test for
these effects we performed some further studies
as reported in this section.

To take account of the minimal size of the tre-
foil knot, we also added a similar constraint to
the side with sliding rings. In these simulations
the monomers were prevented to move from the
ring side to the knot side with a probability of
1/(¢ — 13). This means that when ¢ = 14, the
monomer is strictly forbidden to pass through the
hole from the ring side to the knot side; thus, at
least 14 monomers remain on each side through-
out the simulation. Even in this case, we observe
that the trefoil “wins” the competition against
a single sliding ring. Once more, we found that
at least four rings are need for the two sides of
the chain to exert equal amount of force on each
other. Thus the minimal size of the knot is not a
crucial issue.

We certainly do not expect the trefoil to be
maximally tight. The number of monomers par-
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Figure 10. Schematic “entropic competition” be-
tween a trefoil knot and 6 sliding rings.

ticipating in the knot region is itself a not-so-
well-defined and fluctuating quantity. A better
model than the sliding ring, which allows for
this possibility, is the slip-linked para-knot de-
picted in Fig. 11. The thick oval ring in this
figure represents the ‘worm-hole’ separating the
two segments, while the dotted ovals are slip-
links which keep two points on each loop close to
each other (creating a figure-8 structure on each
segment). The effect of each slip-link is similar
to the hole in that they create two loops; how-
ever, there are self-avoiding interactions among
all the monomers of a loop made into a figure-8
by the slip-link. The number of configurations of
a figure-8 structure with self-avoiding constraints
for1 « ¢ « Lscalesas {~¢(L—{)~¢ with ¢ = 2.88
ind=2and ¢c =224 in d = 3 [29]. Although
this formula is strictly valid only for large ¢ and
L, a recent experiment on a figure-8 chain on a
vibrating plate in 2-dimensions is in good agree-
ment with this formula[30, 31].

Extending the asymptotic formula for the fig-
ure 8 to all separations, we can obtain an analytic
form for the number of configurations of two fig-
ure 8’s in competition. Assuming a minimal size
Smin for each segment, the number of configura-
tions is

w873(€, L) ~
4 L—¢
) /
/s dSSC(Z—s)C X ) ds

min min

c(L L—s) G
s¢(L—L€—s)

Each integrand represents the probability density
of a loop with its associated para-knot. Since
there exists self-avoiding interaction between each
loop and its para-knot, we set ¢ = 2.88 and

13

Figure 11. Two loops are separated by the thick oval
shaped hole. The dotted ovals are slip-links.

w,(LL) w (LL)
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0.02
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L
"~ 20 30 40 50 60 70 80 " 35 40 45 50 55 60 65

Figure 12. Probability distribution for two loops
with one slip-link on each side (figure-8), from Eq. (7)
with L =100 and $min = 14 (a) and s$min = 30 (b).

¢ = 2.24 for two and three dimension respectively.
Figure 12a is a graph of Eq. (7) with s, = 14
and ¢ = 2.24. The distribution shown in Fig. 12a
is qualitatively similar to the one in Fig. 5, for
two loops with one sliding-ring on each side, in
that for both cases, the minimum of the distribu-
tions is in the middle and their maxima are on
the sides. If we increase the minimal size from
Smin = 14 t0 Smin = 30, the maximum moves to
the middle as depicted in Fig. 12b.

6. Conclusions

An important quantity in polymer physics is
the number of configurations that a chain of
length ¢ can take. As noted in the introduction,
this quantity has the asymptotic form of pul—¢
where p depends on the microscopic features of a
chain while the exponent c is universal. In this pa-
per we focus on obtaining the universal exponent,
while bypassing the parameter . To this end, we
employ a hole (or buckle) to divide a polymer into
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two segments (see Figs. 1, 2), and then allow the
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chain decreases, the effective knot size grows with
the size of the polymer, suggesting that simula-
tions on very large chains are needed to avoid the
finite size effect. An important question which
remains is at what size of a molecule the uni-
versal predictions of the asymptotic theories are
expected to hold.

The primary goal of this paper is to present the
method of “entropic competition” for calculation
of entropic exponents of polymers with different
boundary conditions and under different topo-
logical constraints. Our procedure for extract-
ing exponents is in principle simple, yet capa-
ble of producing accurate results. An intriguing
application of the method to topologically con-
strained chains, such as knotted polymers, is also
attempted in this paper. This example also il-
lustrates the limitations of the technique, in that
we find that finite-size effects are quite important
to our simulated knotted chains with L < 300
monomers.

It’s noteworthy to mention that each simula-
tion reported in this paper was obtained in a
maximum of two week’s CPU time on a desk-
top computer. One can apply “entropic competi-
tion” method to longer chains and calculate “en-
tropic exponents” with higher accuracy on a large
cluster of computers with longer amounts of CPU
time.
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