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A new representation for interaction potential functions is presented. Unlike the orthodox approaches, the
potential function is not a fixed function in terms of internuclear coordinates but a probabilistic one which
contains information over a wide range of angular degrees of freedom. It is shown that such approaches can

provide practical solutions for bulk systems of high density.
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1. Introduction

Molecular simulation techniques can provide a
variety of new information on mesoscopic systems
where the analytic theory may be too cumber-
some and/or the experimental data is too dif-
ficult to obtain and analyze. With the help of
the rapidly developing computer technology and
the availability of professionally written software,
nowadays it is possible to study the structure, dy-
namics and the thermodynamics of a wide range
of systems such as clusters, glasses, liquids, mix-
tures or peptides (1).

Even though there is a large number of sim-
ulation techniques carried out over different en-
sembles, basically there are two approaches in
studying bulk properties (1-3) Commonly used
with NVT ensemble, Monte Carlo (MC) simu-
lation consists of averaging over the configura-
tional phase space. However, the dimensions of
the phase space increases exponentially even for
very small systems therefore special techniques
have to be used. The standard MC simula-
tion uses importance sampling where energeti-
cally favored configurations play more important
roles in the averaging process. Although time
is implicitly handled in terms of the imaginary
step length, mostly the structural information
is obtained from MC simulations and the time-
dependent properties must be additionally de-
rived from results.

On the other hand, the molecular dynamics
(MD) simulation directly produces dynamical in-
formation in addition to the structural ones. As
the implementation of the numerical integration
techniques have improved, it has become the
standard method of choice. An initial structure

is defined in the 6N-dimensional phase space and
its time evolution is obtained from solving any
set of equations of motion. Generally the Hamil-
ton’s equations may be preferable for small sys-
tems and as the number of particle increases, the
Newton’s equations become much more practical.

Both of these methods and any other one de-
rived from two basic approaches rely on some sort
of interparticle potential functions. They are used
to calculate and compare the energy of various
configurations in MC and used to calculate the
time derivatives of the momenta in MD. In almost
all cases, these functions either have an analytical
expression or stored as numerical tables in terms
of the distances between particles.

In applying simulation methods, there are seri-
ous numerical problems in high density systems.
The problem lies at the great number of energet-
ically almost degenerate minima which are con-
nected through high barriers. As the simulations
should start from a fixed -usually random- config-
uration, the leaving this basin and reaching an-
other one requires large amount of energy. As
a result, the simulation never becomes ergodic
and the basic theorem of statistical mechanics no
longer applies. In cases of such high density sys-
tems, one needs to use numerous tricks to have
reasonably ergodic simulations. (4-8)

In this work, we present preliminary results
from a very different approach applied to a two-
dimensional system in order to overcome the high
energy barriers.

2. Fuzzy Potentials

As the test case we have used a two-dimensional
system of dipolar hard spheres. Each molecule
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Figure 1. Coordinates defining the relative positions
of two dipoles.

consists of two spheres connected by a rigid
rod which then can be defined by three co-
ordinates (x., y., ¢). x. and y. are the
cartesian coordinates of the bond center and
¢ is the orientation angle. The spheres have
charges of q and —q so that the molecule
remains neutral. Each sphere has also a
Lennard-Jones center to prevent the collapse
of molecules onto each other. This system in
three-dimension is also known as Stockmayer
fluid which shows interesting phase behavior
(9-10). The interaction between two molecules
(i,j) then can be written as:

Vij =Y ewd®[ri +4e((0/re)'? = (o/r)®) (1)

Where the summation index & runs from 1 to 4
which corresponds to all pairwise inetarctions of
(++), (+-), (-+) and (- -) centers with distances
of ry. Similarly cy is either -1 or +1 depending on
whether two centers have opposite or like charges.

We have decided to use the MC simulations
though the use in molecular dynamics follow in
a straightforward manner. Our standard simula-
tion consists of 338 particles placed on a square
box of size 24x24. The charge q is 0.25, and the
temperature is 0.8 (all in general units).The cen-
ter of masses of each particle are placed as in a
layer of fcc configuration - Since the molecules are
elongated in one dimension, we have used a 13x26
grid- with directional orientations being chosen
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Figure 2. Number density N(E) for R=1.2 (open
circles), R=1.5 (crosses)

randomly.

In every step of the MC simulation, a ran-
dom particle is moved randomly both by shift-
ing the center of mass within a small area and
its direction by a small amount — again randomly
determined-. The energy of the new configura-
tion is compared to the energy of the old one. If
the new configuration has lower energy, then it
is accepted. However, if it has a higher energy,
the Boltzmann probability determines the fate of
the move. In this manner, both the low energy
regime is sampled more heavily and still part of
the high energy regime is accessable. This proce-
dure requires the computation of the changes in
the interaction energy from Eq. 1.

If the density of the system is high, most of
the dipoles are very close to each other and any
attempt to separate them may shift them to the
highly repulsive regions of other dipoles. To find
the equilibrium structure in such cases may not
be possible in reasonable simulation times. Our
approach is to develop an “artificial” pathway to-
wards the equilibrium where the energy barriers
are lower than the actual ones. Once the equi-
librium is reached, then using the conventional
techniques one can simulate the actual system.
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Figure 3. Probability function P(E) for R=1.2 (open
circles), R=1.5 (crosses)

The relative positions of two dipoles can be
given in by a distance and two angles defined as
in Fig. 1. The variation of the angles a and f
are the main reasons of generating highly over-
lapping structures. However, by integrating over
two angles one can generate a distance-dependent
energy functional. An example of these func-
tions are presented in Fig.2 for R=1.2 and 1.5.
We proceed to denote the number density of as
N(R,E) = number of (a ,3) pairs within the vicin-
ity of energy E. Then the probability distribution
is written as:

o(R,E) = | N(R, E')dE" 2)

The variations of the total probability as a
function of the energy are given in Fig. 3 for
the above mentioned cases.

We would like to call this approach as the fuzzy
potential since the deterministic energy concept
is replaced by a “fuzzy” definition of the energy.
That is, the energy of a pair of dipoles having ex-
actly the same relative conformations may have
different numerical values within the course of the
simulation. In our procedure, every calculation
of energy becomes a random sampling from the
probability distribution (Eq. 2). The first part
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Figure 4. Superimposed snapshots from simulations.
a) Monte Carlo, b) Fuzzy Potential

of the algorithm consists of a) generating an en-
semble of energy values at a wide range of R, «
and 8, and b) computing probability distributions
for fixed R values integrated over angles. Then
the usual steps of MC are followed except that
the calculation of interaction energy from Eq. 1
is replaced by a random sampling from Eq. 2.
Since in this sampling, “hypothetically” low en-
ergy barriers are generated, a faster convergence
to the equilibrium can be attained (The sampling
is clearly biased towards lower energy regimes).
In Fig. 4a and 4b, we compare superimposed
structures obtained from MC simulations and the
modified version. The MC case shows clearly
that the system cannot leave its local minimum.
The fuzzy potential case, though still quantita-
tively not good enough, shows a much improved
attempt at equilibration. Similar results are ob-
tained by analyzing the average fluctuations of
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the orientational angle. During simulations wih
orthodox MC, the average variation of the angle is
around 0.1° and it is around 1.0° for the fuzzy po-
tential case. Clearly these numbers are very small
to be very optimistic; however, this test case has a
unusually high density and to get an equilibrated
structure is not feasible with standard techniques.

3. Conclusions

The deterministic potential energy is replaced
by a “fuzzy” probabilistic function to be used
with molecular simulations. The use of the term
“fuzzy” may not be the most appropriate one;
however, it describes the essence of our approach.
The use of the hypothetically low energy barriers
allow equilibration of systems where the standard
techniques fail. On the other hand, there is al-
ways the danger of reaching“unphysical” states.
The optimum solution consists of alternating MC
and Fuzzy potentials during the equilibration and
then using MC or MD to obtain physically rele-
vant information. The work is in progress along
these lines.
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