ARI The Bulletin of the Istanbul Technical University
Communicated by Metin Giirgdze

VOLUME 53, NUMBER 1

Free Vibration Analysis of Circular, Annular and Annular Sectoral Plates

Nihal Erath
epartment of Civil Engineering, Istanbul Technical University, 34469 Maslak, Istanbul, Turkey
(Received 14 October 2002)

In this study, free vibration analysis of circular, annular and annular sectoral thick plates is carried out by
mixed finite element method based on the Gateaux differential. In free vibration analysis, the problem reduces
to the solution of a standard eigenvalue problem and the mixed element is based upon a consistent mass matrix
formulation. Bending and torsional moments, transverse shear forces, rotations and displacements are the basic
unknowns of the functional. Two different sectoral elements are used with 3x8 degrees of freedom (SEC24) and
4% 8 degrees of freedom (SEC32). The accuracy of the SEC24 and SEC32 elements together is verified by applying
the method to some problems taken from the literature.

Keywords: Sectoral element, circular plate, annular sectoral plate, finite element, free vibration.

1. Introduction

Plates are used extensively in engineering
structures. Therefore extensive researches ex-
ist in literature. Several plate theories can be
cited like Classical, Reissner and Mindlin. These
theories depend greatly on the thickness of the
plate. In the classical plate theory which is also
called Kirchhoff (thin) plate theory, the influence
of transverse shearing strains is neglected. In or-
der to obtain a reliable representation of struc-
tural behavior of plates, the refined theories like
Reissner and Mindlin have been developed. With
the assumption of a linear bending stress distri-
bution and a parabolic shear stress distribution
through the thickness of the plate, the Reissner
plate theory is derived from the variational prin-
ciple of the complementary energy [1,2]. By as-
suming a linear variation of the in-plane displace-
ments across the plate thickness, Mindlin plate
theory is obtained from the variational principle
of the complementary energy [3]. Depending on
Reissner plate theory, the displacement variation
is not necessarily linear across the plate thick-
ness and also the deformation of the plate thick-
ness. Reissner and Mindlin theories, can be used
to study free vibration of thick plates as well as
thin plates. A considerable number of publica-
tions are concerned with the problem of the free
vibration of circular, annular and annular sectoral
plates. [4] based on Mindlin theory, which re-
quire C° continuity has developed a very efficient
form of the bilinear four-node element (S1). [5]
have performed free vibration analysis with this
element. C° continuity causes a problem called

shear locking when the plate thickness approaches
zero. Various modifications of formulation have
been introduced in order to overcome this prob-
lem such as reduced / selective integration [6] and
Discrete Kirchhoff-Mindlin element [7]. [8] sug-
gests a method to remove zero-energy (kinemat-
ics) mode by perturbing the stiffness by stabiliza-
tion matrix. Recently [9] and [10] have obtained
an element for thick plates based on the Reissner
theory using the Gateaux approach, which elimi-
nates shear locking.

In this study, free vibration analysis of circu-
lar, annular and annular sectoral Reissner plates
is carried out by mixed finite element method us-
ing a functional which is based on the Gateaux
differential. The finite elements of various shapes
have found application, among the most popular
are the rectangular, quadrilateral and triangular
elements. For problems involving curved bound-
aries, the triangular, quadrilateral or curved el-
ements such as sectoral elements may be more
suitable. [10] developed two different sectoral
elements with 3x8 degrees of freedom (SEC24)
and 4x8 degrees of freedom (SEC32). These sec-
toral elements are ideally suited for the dynamic
analysis of circular, annular and annular sectoral
plates. In dynamic analysis, the problem reduces
to the solution of a standard eigenvalue problem
and the mixed element is based upon a consis-
tent mass matrix formulation. The accuracy of
the present method is discussed for circular plates
with different edge conditions, annular and annu-
lar sectoral plates, and compared to the results
calculated by the other methods.
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Figure 1. The positive directions of internal forces

2. The field equations of thick plate in po-
lar coordinates

Reissner plate theory includes the transverse
shear effects and field equations of a plate element
h r dr df (Fig. 1) in polar coordinates are given
in Eq. (1) [10,11].
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In symbolic form, dynamic (natural) boundary
conditions can be written as,

M- M =0,

Q_ona (2)

30

and geometric (kinematic) boundary conditions
are

w—w=0,

Q-Q=o0. (3)

The explicit form of the boundary conditions will
be obtained after some variational manipulations.
In Eq. (2) and Eq. (3) quantities with hat are
known values on the boundary. M, Q, ) | w are
the moment, force, rotation and deflection vec-
tors, respectively. Field equations for Reissner
plate in polar coordinates can be written in oper-

ator form as,
Q=Ly-f (4)

The matrix form of the operator is given in [10]
in detail.

3. Functional for thick plates in polar co-
ordinates

If the operator Q in Eq. (4) is potential, the
equality

<dQ(y,y),y* >=<dQ(y,y*),y > (5)

must be satisfied [12]. dQ(y,¥) and dQ(y,y*)
are Gateaux derivatives of the operator in direc-
tions of ¥ and y* which are constant elements in
the domain. Gateaux derivative of the operator
is defined as;

0Q(u + Ta)

dQ(u, ) = ==

(6)

7=0

where 7 is a scalar. Using this definition, after
some simple manipulations it can be shown that
Eq. (5) holds and the operator Q is a poten-
tial operator. To satisfy this equality the explicit
forms of the boundary conditions must be as fol-
lows;

(M, 9] = 0, (M; + - Mo)] + [0, (Mro + - My)],

[Q,w] = [(Qr + Qs), W]. (7)

Since the operator is potential then the functional
corresponding to the field equations is obtained
as;

I(y) = / Q(sy), ¥ ds, (8)
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where s is a scalar quality. Functional I,(y) can
be obtained after some manipulations as;

I, = [Qn (@ 4w )]+ Q0 (0 + 1wg)] ()
+ [Mra Qr,r] + [%Mﬁa (99,0 + Qr)]

1 1
+ [Mrﬁa (;QT,G + Qe,r - ;Qg)]

o IMy, M+ (M, My] — 200y, M)
21+ )My, Mgl} — 5o 11Qr, Q1]

[QG?QG]} - [q’W]A_ [(Q - szM]e
- [(w=W),Ql = [M,Q], - [Q,W],.

The braces with the ¢ index and e index are
valid on the boundary where the dynamic bound-
ary conditions and the geometric boundary con-
ditions are prescribed, respectively. Where [ , | is
the inner product and defined as follows;

[fyg]=//f(r,0)g(r,0)rdrd0.

For the free vibration analysis, the functional
given by Eq. (9) is valid only by letting
[q,w]=1/2 pw? [w,w] as far as the harmonic so-
lutions are required. If the variational derivative
of the functional in Eq. (9) is taken, all the field
equations and boundary conditions can be repro-
duced.

(10)

The same functional can be obtained by the
Hellinger-Reissner principle, but it is believed
that the Gateaux approach has the following ad-
vantages over the Hellinger-Reissner approach:

1. The field equation must be consistent [13].
Gateaux differential method provides consistency
of field equations [14].

2. During the potential test, boundary condi-
tions can be constructed.

3. All the field equations are enforced to the
functional in a systematic manner.

Let w be the displacement in z-direction, [Q,]
and [(Yy] being the rotations of the cross-sections
normal to in rz and 6z planes. @,,Qy are
shear forces and M., My, M,y are the bending and
torsional moments in polar coordinates. They
are nodal unknowns of the generated finite el-
ement and expressed by shape functions (v;)
which are given in Appendix II. For example,
w(r,0,t)=sin wt Yw;1;(s,n) where w; are the
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nodal values and i=1,....,n (n=number of nodes
of the element). In the finite element formula-
tion of thick plates, two different elements which
is depicted in (Fig. 2) and (Fig.3) are used.
One of these elements is SEC24 which has an
element with 24 degrees of freedom, and with
8 degrees of freedom per node. The other one
is SEC32 which has 32 degrees of freedom ele-
ment with 8 degrees of freedom per node. The
finite element matrices [k]24, [k]s2 for SEC24 and
SEC32 are obtained by variational principles from
Eq. (9). These element matrices and the ex-
plicit form of the submatrices of these elements
([K1]2a, [K2]24, [K3)o4, [Kal2a, K132, [K2]32,
[K3]32, [[{4]32) are given in Appendix II.

4. Free vibration analyze

The problem of determining the natural vibra-
tion frequencies of a structural system reduces to
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(K]~ w” [M] =0,

where [K] is the system matrix, [M] is the mass
matrix for the entire domain and w is the natu-
ral angular frequency of the system. The explicit
form of Eq. (11) is

[K12] 210 0
[Kzz]] — [0 [M]])
At

where {F} = {MQQ}’,{w} are moments,
shear forces, rotations and displacement vectors,

[ el

(12)
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respectively. Elimination of {F} from Eq. (12)
gives

(K*] — w? [M]) {w} = {0}, (13)
where
[K*] = [Ka2] — [Ki2]" [K11] ™" [Ki2], (14)

and [K*] is the condensed system matrix of
the problem. If there is no foundation, then
[K22] = 0. The element mass matrix is based
upon consistent mass formulation as,

[m] = ph[K). (15)

where h is the plate thickness, p is the mass den-
sity and [K1] is given in Appendix II.

5. Numerical examples

Free vibration of circular plates has been inves-
tigated intensively in the literature. In order to
check the applicability and accuracy of the pro-
posed mixed finite element formulation of thick
sectoral plates, various problems are solved and
results are compared with some existing studies
in the literature. Example problems will display
the properties of the SEC24-SEC32 elements for
plate vibration.

Example 1. The simply supported circular
plate and shear locking test for dynamic analysis

In the present example, a simply supported
circular plate is considered and frequency pa-
rameters are obtained for different meshes. The

32

Figure 4. Convergence of frequence parameters in
simply supported circular plate for different meshes

convergence of frequency parameters is sketched
in Fig. (4). Values of frequency parameter
(0 = wa?®+/p/D) found using SEC24-SEC32 are
tabulated in Table 1, where n, s refers to the
number of radial and circumferential nodes, re-
spectively. 288 elements are used in calculation.
8 and 36 elements exist in radial and angular di-
rections, respectively. Inspection of Table 1 shows
that, the frequency parameters obtained by Reiss-
ner plate theory are lower than the ones given by
[15] as expected. The plate thickness affects the
behavior of the plate. It is well known that, the
shear deformation becomes important as the ra-
tio of plate thickness to the radius of plate (h/a)
decreases. The comparison of first frequency pa-
rameter (W) variations for simply supported cir-
cular plate and for different plate thicknesses is
given in Fig. (5). It can be seen that Kirchhoff
plate theory is valid for the value of a/h higher
than 20. Similar comparisons can be also given
for higher frequency parameters in Fig. (6). It
is observed that this ratio increase with the in-
creasing frequency parameters, e.i. a/h reaches
to 50 for wyg, Wag, @Wo1, W3o. On the other hand,
Reissner plate theory is valid for analysis thick
as well as thin plates. Shear locking effects are
tested as far as a/h=10* and it is observed that
sectoral elements are free from shear locking. Fig.
(7) shows mesh which is used in calculation. The
contour lines of &gy, Wig, Weo are shown in Fig.

().
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Table 1

Frequency parameters (@ = wa® 1/p/D) for simply supported circular plate (¥=0.3)

n=0 n=1 n=2 n=3 n=4

n=>5

n=6 n=7 n=8 n=9 n=10

S=

s=1 29.68 47.79 69.41 93.58

(4.93) (13.89) (25.61) (39.95) (56.84) (76.20) (97.99) (122.17) (148.72) (177.61) (208.81)
119.04 14829 178.15 213.22 247.09 285.01

(20.72) (48.47) (70.11) (94.54) (121.70) (151.51) (183.94) (218.95) (256.49) (296.54)
(74.15) (102.77) (134.29) (168.67) (205.85) (245.77) (288.41) (333.72) (381.66)
s=3 137.01 175.69 212.30 259.55 305.78 357.22 406.63 458.18
(138.31) (176.80) (218.20) (262.48) (309.60) (359.53) (412.22) (467.64)
s=4 213.02 266.64 306.83 373.82 406.06 485.97 550.32
(222.21) (270.56) (321.84) (376.01) (433.04) (492.91) (555.59)

(325.84) (384.06) (445.21) (509.26)
s=6 406.64 503.13
(449.22) (517.3)

(...) are taken from Leissa 1969 [16].
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Figure 5. Shear locking test for first frequency pa-
rameter

Example 2. Circular plate clamped all around

The frequency parameters of clamped circular
plate are obtained by using SEC24-SEC32 and
compared with [16]. Values of frequency param-
eter (0 = wa®+/p/D) obtained using SEC24-
SEC32 are tabulated in Table 2, where n, s refers
to the number of radial and circumferential nodes,
respectively. The total number of elements used
in calculation are 288. 8 and 36 elements exist in
radial and angular directions, respectively. The
frequency parameters obtained by Reissner plate
theory are lower than the ones given by Kirchhoff
plate theory.
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Figure 6. Shear locking test for several frequency
parameters

Example 3. Completely free circular plate

The frequency parameters (0 = wa®+/p/D)
of the completely free plate obtained using
SEC24-SEC32 are tabulated in Table 3, where
n, s refers to the number of radial and circum-
ferential nodes, respectively and compared with
[16]. The total number of elements used in cal-
culation are 288. 8 and 36 elements exist in
radial and angular directions, respectively. The
frequency parameters obtained by Reissner plate
theory are lower than the ones given by Kirchhoff
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Table 2
Frequency parameters (@ = wa? 1/p/D) for clamped circular plate (¢¥=0.3)

n=0 n=1 n=2 n=3 n=4 n=>5 n=>6 n=7 n==8 n=9 n=10

s=0 1021 21.19 3463 50.73 69.06 89.57 111.96 13550 161.20 194.76 230.69
(10.21) (21.26) (34.88) (51.04) (69.66) (90.73) (I114.21) (140.05) (168.24) (198.75) (231.57)
s=1 39.50 59.06 83.59 109.38 135.57 169.90 204.67 233.12 269.84 297.46 359.07
(39.77) (60.82) (84.58) (111.01) (140.10) (171.80) (206.07) (242.87) (282.19) (324.00) (368.27)
s=2 85.96 111.96 150.95 190.11 226.05 269.84 310.74 359.07
(89.10) (120.08) (153.81) (190.30) (229.51) (271.42) (316.00) (363.20)
s=3 156.01 194.76 233.12 286.58 331.49 385.35
(158.18) (199.06) (242.71) (289.17) (338.41) (390.38)
s=4 244.13 297.46 339.70 407.66
(247.00) (297.77) (351.38) (407.72)
s=5 354.14
(355.56)

(...) are taken from Leissa 1969 [16].

Table 3

Frequency parameters (@ = wa® y/p/D) for completely free circular plate (»=0.33)
n=0 n=1 n=2 n=3 n=4 n=>5 n=6
s=0 5.24 12.19 21.36 32.63 45.81
(5.353) (12.23) (21.60) (33.10) (46.20)
s=1 9.06 20.48 35.13 51.69 72.40 94.83 120.8
(9.08) (20.52) (35.25) (52.91) (73.10) (95.80) (121.0)
s=2 36.68 58.86 83.31 110.5 138.06 173.8 207.3
(38.55) (59.86) (83.90) (111.3) (142.8) (175.0) (210.3)
s=3 85.99 116.6 152.6 190.6 230.4 274.5 3124
(87.80) (119.0) (154.0) (192.1) (232.3) (274.6) (319.7)
s=4 153.8 192.8 238.8 279.9 338.7 390.5 4304
(157.0) (198.2) (242.7) (290.7) (340.4) (392.4) (447.3)
s=5 240.8 296.7 349.2 405.6 456.7 526.4 549.1

(245.9) (296.9) (350.8) (408.4) (467.9) (529.5) (593.9)

(...) are taken from Leissa 1969 [16].

34
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Figure 7. Typical circular plate mesh with 5 element

plate theory.
Example 4. The annular plate

In the literature, a considerable amount of work
has been reported on the vibration of thin annular
plates. It is well known that, the effect of shear
deformation, cause decreases in the computed fre-
quency parameters (0 = wa?®+/p/D), just like
circular plates. Free-simply supported annular
plate shown in Fig. (9) is analyzed and the fre-
quency parameters of the annular plate obtained
using SEC32 are tabulated in Table 4 for various
values of (b/a) versus a/h, where n, s refers to
the number of radial and circumferential nodes,
respectively. The total number of elements used
in calculation are 288. 8 and 36 elements exist
in radial and angular directions, respectively. It
can be observed that, the frequency parameters
obtained by Reissner plate theory (SEC32) and
Kirchhoff plate theory [16] decrease with a de-
creasing in the thickness ratio (a/h) and the radii
ratio (b/a). The frequency parameters obtained
by Reissner plate theory are lower than the ones
given by Kirchhoff plate theory. [17,18] have used
thick plate theories and obtained the same trend
as present theory (SEC32) when plate thickness
was changed. The contour line of @y is shown in
Fig. (10).

Example 5. Annular sectoral plates

Annular sectoral plates with two different
boundary conditions (all sides simply supported

35

Figure 8. a. The counter line of wqo for simply sup-
ported circular plate. b. The counter line of wio for
simply supported circular plate c. The counter line
of wsgo for simply supported circular plate
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Table 4
Frequency parameters (@ = wa® 1/p/D) for free-simply supported annular plates (¢¥=0.3)
b/a=0.00005 b/a=0.1 b/a=0.3 b/a=0.5
nsa/h 5 10 50 5 10 o0 b) 10 o0 b) 10 o0
01 4.78 4.87 490 4.70 477 480 4.57 4.63 4.64 5.00 5.05 5.06
(4.97) (4.86) (4.66) (5.07)
2 25.53 28.28 29.37 25.82 2842 29.43 31.05 35.60 37.35 51.73 62.08 66.45
(29.76) (29.40) (37.00) (65.80)
11 12.81 13.56 13.84 12.54 13.31 13.62 11.73 11.96 1233 9.98 10.71 11.04
(13.94) (13.90) (12.80) (11.60)
2 37.16 43.68 46.60 37.66 44.29 47.32 36.48 41.79 43.98 53.13 62.33 67.86
(48.51) (48.00) (45.80) (69.90)
21 22.25 24.52 25.46 22.02 24.24 25.17 20.71 22.99 23.71 18.55 20.51 21.44
(25.65) (25.40) (24.10) (22.30)
2 53.12 64.92 68.57 47.09 63.50 65.82 43.13 57.57 62.20 58.63 72.01 78.54
(70.14) (69.20) (65.10) (81.10)

(...) are taken from Leissa 1969 [16].
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Figure 10. The counter line of woo for annular plate
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and clamped) (Fig. 11) are considered for vari-
ous thickness ratios. Therefore, two examples are
analyzed by using SEC32. 192 elements are used
in calculation. 12 and 16 elements exist in radial
and angular directions, respectively.

In the first example, the annular sectoral plate
like fan shape (b/a=0.00001) and sectoral shape
(b/a=0.4) with all edges simply supported are
solved. The results obtained for two types are
tabulated in Tables 5-6. As a second example,
the plate, which has same geometry, is solved for
clamped edges and the results are given in Tables
7-8. The contour lines of frequency parameters
for sectoral plate with simply supported are given
in Fig. (12).

The present results are in a good agreement
with the other studies using different methods
[19,22]. Tt is seen that the frequency parame-
ters are found to decrease with increasing sec-
toral angles (a) and increasing thickness. The
effects of different boundary conditions can also
be observed. By comparing simply supported and
clamped boundary conditions, The frequency pa-
rameters for the simply supported sectoral plates
much lower than the clamped sectoral plates.
These results show that the frequency parame-
ters increase with increasing rigidity of plates.

Example 6. Circular plates on an elastic foun-
dation

In order to demonstrate the efficiency of SEC24
and SEC32 elements, the free vibration analyze
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Table 5
Frequency parameters (@ = wa® y/p/ D) for fan shape sectorial plates with simply supported boundary conditions
(»=0.3),(b/a=0.00001)

a h/a 1 2 3 4 5 6

/6 0.001 97.93 183.22 278.05 283.95 393.27 427.10
/6 0.1 83.55 143.86 203.15 205.53 264.15 281.41
/6 0.2 64.80 101.56 134.00 135.46 174.28 178.89
7/4 0.001 56.722 121.40 148.71 203.82 255.17 277.85
w/4 0.1 51.07 101.86 121.74 158.47 190.47 203.92
/4 0.2 42.45 76.55 88.59 109.83 127.23 134.32
/3 0.001 39.87 94.36 97.90 167.67 177.29 183.29
/3 0.1 36.80 81.85 84.70 135.06 138.66 145.96
/3 0.2 31.76 63.85 65.63 96.53 98.49 100.36
/2 0.001 25.76 56.77 70.91 97.93 121.39 135.92
/2 0.1 24.14 51.73 62.75 85.06 103.19 111.57
/2 0.2 21.66 43.07 51.06 64.73 77.46 82.96

Table 6

Frequency parameters (@ = wa®+/p/D) for sectorial plates with simply supported boundary conditions
(v=0.3),(b/a=0.4)

a h/a 1 2 3 4 5 6

/6 0.001 98.74 195.26 277.94 334.46 431.31 521.87
/6 0.1 83.421 149.66 202.83 232.22 283.02 325.02
/6 0.2 64.73 105.18 133.94 144.28 149.71 175.13
/4 0.001 60.32 147.93 148.87 260.24 277.79 285.51
/4 0.1 52.77 119.65 121.42 192.12 199.94 203.54
/4 0.2 43.62 87.47 88.46 128.26 134.24 136.48
/3 0.001 46.13 98.71 131.31 177.31 195.11 268.00
/3 0.1 41.215 84.645 109.23 141.60 151.83 199.54
/3 0.2 34.966 65.60 81.05 98.41 106.18 131.79
/2 0.001 36.10 60.30 98.74 119.72 147.95 148.43
/2 0.1 33.06 53.52 85.02 101.93 120.67 122.03
/2 0.2 28.68 44.19 65.88 76.56 87.96 88.83

Table 7

Frequency parameters (@ = wa®+/p/D) for fan shape sectorial plates with clamped boundary conditions
(¥=0.3),(b/a=0.00001)

a h/a 1 2 3 4 5 6

/6 0.001 188.82 295.31 422.05 432.62 529.11 581.62
/6 0.1 130.65 187.09 225.67 241.84 296.15 312.43
/6 0.2 82.54 113.74 132.07 142.21 172.36 179.93
/4 0.001 107.82 189.86 225.42 308.15 346.41 378.90
/4 0.1 84.96 136.03 155.59 180.87 219.45 233.12
/4 0.2 58.63 88.08 98.67 118.38 133.78 140.77
/3 0.001 75.86 144.33 149.38 225.53 243.06 248.44
/3 0.1 63.29 110.49 113.38 158.70 167.34 169.19
/3 0.2 46.31 74.69 76.31 100.07 104.65 107.97
/2 0.001 48.77 87.67 104.60 136.46 164.03 178.59
/2 0.1 43.23 73.33 85.39 107.46 125.15 133.92
/2 0.2 33.89 93.92 60.90 74.45 84.60 89.59

37
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Table 8

Frequency parameters (@ = wa® 1/p/D) for sectorial plates with clamped boundary conditions (v=0.3),(b/a=0.4)
a h/a 1 2 3 4 ) 6
/6 0.001 188.16 305.05 418.32 452.09 598.87 658.23
/6 0.1 130.08 192.52 241.49 264.88 314.63 349.40
/6 0.2 82.82 117.19 142.18 156.17 180.65 200.23
w/4 0.001 111.22 219.56 224.86 356.05 373.19 376.02
/4 0.1 87.46 153.37 155.49 222.79 232.52 234.36
/4 0.2 60.44 97.86 98.73 135.51 140.66 142.06
/3 0.001 85.24 149.74 194.51 241.95 266.68 357.03
/3 0.1 70.078 114.11 139.55 168.97 181.03 223.51
/3 0.2 50.49 76.86 90.38 107.95 113.81 136.62
/2 0.001 69.76 95.83 138.25 180.16 194.54 208.38
/2 0.1 58.47 78.29 108.44 125.87 144.43 148.57
/2 0.2 42.92 56.34 75.04 84.98 95.88 96.35

N

AL\ |

2
/2
b

Figure 11. The annular sectoral plate

of circular plate with simply supports on Winkler
foundation is considered for different foundation
coefficients k. The total number of elements used
are 288. 8 and 36 elements exist in radial and an-
gular directions, respectively. To solve this kind
of problem, term in Eq. (16) is added to the func-
tional.

I=1,+1;,

1
Iy = §[kw,w]. (16)
This problem is solved and the effect of variation
of k on the (@go) frequency parameter for Winkler
foundation is shown in Fig. (13).

38

(©) (d)

Figure 12. The counter lines of simply supported
sectoral plate
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Figure 13. The effect of variation of k on the woo
frequency parameter for Winkler foundation

6. Conclusion

In this paper, a free vibration analysis of cir-
cular, annular and annular sectoral plates based
on Reissner theory has been presented. Two dif-
ferent elements (SEC24-SEC32) are used. The
performance of the elements has also been investi-
gated through the representative problems. From
this study, it can be conciuded that the values of
the present analysis agree well with other solu-
tions. For this study, the following remarks can
be made:

1. The functional used in this study has only
first order derivatives, therefore, bilinear shape
functions are used and two elements (SEC24-
SEC32) are obtained in an explicit form.

2. SEC24 and SEC32 avoid the shear lock-
ing and converge to the Kirchhoff solution for
thin plates. Therefore, SEC24 and SEC32 based
on Reissner plate theory are valid for analysis of
thick as well as thin plates.

3. SEC24 and SEC32 provide accurate solu-
tion.

4. To assess the performance of SEC24 and
SEC32, circular plates with several boundary con-
ditions, annular plates and annular sectoral plates
are solved. The frequency parameters of these
plates are compared with theoretical results and
good agreement is achieved.
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5 The freoauency naramoeters ghtained by
. U U

AL J.l\_/ L \J\iu\/ll\/‘y PLIIJ. aliivuulro UU \JLIIJ.IJ.L/
Reissner plate theory are lower than the ones
given by Kirchhoff plate theory as expected.

6. The dynamic analysis of thick circular plates
resting on Winkler foundation is performed and
reasonable results are obtained.
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Appendix I
Notation

M,, My, M,p: bending moments

Q.,Qy: shear forces

q: distributed load

k: spring coefficient of foundation

w: displacement of plate

Q,,Qy : the components of the rotation of a nor-
mal to the middle plane of the plate, respectively
a : radius of plate

h : thickness of plate

E,v,G, D : modules of elasticity, Poisson’s ratio,
shear modules of elasticity and plate rigidity, re-
spectively

I (y) : functional

<,>,[,] : inner product

[,]e : geometric (kinematic) boundary condition
[,]o : dynamic (natural) boundary condition

v; : shape functions (i=1,...,3 for SEC24 or
i=1,...,4 for SEC32)

s,n : non-dimensional coordinates of a master el-
ement

[k]24, [k]32 : SEC24 and SEC32 finite element ma-
trices

L : coefficient matrix

f : load vector

y : unknown vectors

K], [M],[K*] : system matrix, mass matrix and
condensed matrix vectors, respectively

[m] : mass matrix of element

p, p : mass density per unit volume and per unit
area, respectively

w, @ : natural angular frequency and frequency
parameter, respectively.
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M,

71 [K1]24

y1[K1]32

Appendix IT

For SEC24 element (Fig. 2),

My M,q

Yo [K(1]24 0

Y1 [ K1 ]24 0
v3[K1)24
My Mg

Y2 [K1]32 0

1K 1]32 0
v3[K1]32

"/Jl = (1 - 8)7
'(/}2 =S (1 - 77)7
3 = s1), (A1)
where
r
s=—,
T2
06— 6,
h= gt (4.2)
For SEC32 element (Fig. 3),
1= (1-3s)(1-n),
'(/}2 =S (1 - 77)7
,(/}3 =sn,
Ya = (1-s)m, (A.3)
where
_ T—"r
5T TAr
60— 0,
= . A4
1= "1y (A.4)
The element matrices [k]24, [k]32 for SEC24 and SEC32 are obtained as follows:
Qr QG Qr Qa w
0 0 [K2]24 0 0 T
0 0 [K3)24 [K4)24 0
0 0 [Ka]2a [K2 — K324 0
Ya[K1]24 0 [K1]24 0 [K3]24 (A4.5)
Ya[K1]24 0 [K1]24 (K424 '
0 0 0
0 0
V5 [K1]24
Qr Qo 0y Qg w
0 0 [K2]32 0 0 7
0 0 [K3]32 [K4]32 0
0 0 [K4lz2 [K2 — K332 0
Ya[K1]32 0 [K1]a2 0 [Kalao (4.6)
~va[K1]32 0 [K1]32 (K432 ’
0 0 0
0 0
v5[K1]32
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where
12
71 - Eh37

—12v

T ER

—24(1+4v)
Eh3 ’
—12(1+v)
5Eh
V5 = k} (A7)
The explicit form of the submatrices [K1]24, [K2]24, [K3]24, [K4]24, [Kl]gz, [Kz]gg, [Kg]gz, [K4]32 are

Y3 =

Ya

given in Eq. (A.8-A.17). Submatrices for SEC24 element,

ABy ABL ABL 4
o 02 14 L9 L9
[Ki2a = //wiwj rdrdf = | 4B Al AB (A.8)
0 6 AB1  AB1 ALB;
24 24 12
=B By By
o 02 6 12 12
(K224 = //wiibj’erng =|=2 L b (A.9)
0 6 B B B
6 18 9
By By By -
3 12 12
ro Oo
Koo = [ [wvyaras=| 5 5 & (4.10)
o n By By By
12 18 9 =
0 =rz2 T2 ;
v 0 6 6
(K424 ://wiwj’a drdf =10 =2 2 (A.11)
0 91 T T
—r2 2
0 = % A
where
A1 = ’I‘g,
Bl = 92 - 617
By =By (A.12)

Submatrices for SEC32 element,
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roy O

[K1]32 =//wiwjrdrd0=

r1 6

ry O

[K3]32 = //%’%',Trdrdez

r1 6

roy O

[K3]32 = / / Y drdf =

r1 61

roy O

[K4]32 =//¢z' Wj g drdf =

r1 6,

- AsAsBy  AsAe¢Byg  A3zAeByg  A3zA4Bo
36 36 72 70
A3AsgBy A3AsBg A3AsBg  A3z3AsBo
36 36 72 72
AsAgBy AsAsBg  A3AsBg  AsAgBo
72 72 36 36
A3A4Bg  A3AcBg  A3AgByg  A3A4Bg
- 72 72 36 36
-A1By  —A1Bo —A1Bg Ai1Bg
18 18 36 36
AsBy —AsBg —AxByg AsBg
18 18 36 36
AsBy  —AsBy —A3Bg  AxBg
36 36 18 18
A1Bo —A1By —A1By A1Bg
- 36 36 18 18
-As As Ag As
9 18 36 18
Ag  Ag  Asg  Ag
i8 9 18 36
Ag  As Az As
36 18 9 18
As  As  As  As
- 18 36 18 9 -
rAs Az —As  —As -
6 12 12 6
As A3 —As  —As
12 6 6 12
As  As  —As  —As
12 6 6 12
As Az =—As =As
-6 12 12 6 .
where
Al =2r + T,
Ap =2ry + 11,
A3 =Ty —To,
A4 = 37"1 + T2,
A5 - 37”2 + T1,
Ag =11 + 12,
A8 = Ang,
Bg = 01 - 02.
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(A.13)

(A.14)

(A.15)

(A.16)

(A.17)



