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Characteristic curves or surfaces of engines are important regarding the safety and the efficiency of operation.
Deriving these functions automatically, and then monitoring them constantly against their longer term variations
would provide the necessary information required to find the optimal operating points, to detect impending failures
or to diagnose after a failure. This paper discusses the use of a learning algorithm for this purpose. The algorithm
has originally been used for building heating automation, and in this paper the feasibility and the effects of the
algorithm parameters for a jet engine fuel consumption application are investigated after presenting the algorithm
and studying some of its fundamental properties. The engine characteristic used in simulations is that of a typical
turbofan aircraft engine, and its Thrust-Specific-Fuel-Consumption is derived against the Mach number and the
thrust as the independent variables, serving as an example and also illustrating some further properties of the

algorithm.
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1. Introduction

rived from a mathematical starting point such as

Characteristics of internal combustion engines
provide an indication of their conditions as to
whether or not they are operating normally or
beyond acceptable limits of performance, regard-
ing the power or thrust output, the fuel con-
sumption (efficiency) and the pollution generat-
ing potential. For this reason, deriving and con-
stantly monitoring these characteristics automat-
ically would prove useful in the efforts to make
the engine run at its best operating point with
regard to power, efficiency or pollution in spite of
possible long term variations, in addition to its
role as an early warning system against impend-
ing trouble, and perhaps as an aid in diagnosis
after a failure.

In this study, a trainable nonlinear function
generator is proposed for this purpose. The pa-
per first presents the algorithm and studies some
additional properties of it, then, as an example
usage, considers the application of the algorithm
to the monitoring of the ”Thrust Specific Fuel
Consumption” surface of a typical turbine engine,
where the effects of the parameters of this estima-
tion and learning algorithm are investigated more
specifically, based on simulations.

As described in the following section, the al-
gorithm is one that has been tested successfully
in practical commercial applications concerned
with building heating automation. It is not de-

aiming for the minimization of the squared er-
ror, because factors other than mathematical cri-
teria usually have to be taken into account in
the definition of such practically feasible algo-
rithms to obtain efficiency, reliability and sim-
plicity. Apparently, this practically proven al-
gorithm has the potential to be useful in many
engineering applications, and this potential has
motivated this study to understand its proper-
ties better, through its application on a jet engine
characteristic surface monitoring task.

2. The Structure of the Algorithm

The algorithm proposed here for deriving and
monitoring engine characteristic curves, surfaces,
or hypersurfaces has been proposed and used
for building heating automation, concerned with
heating efficiency in particular (Leimgruber et al.
1984, 1988). For buildings like business head-
quarters, malls, or schools which are not heated
24 hours a day, the system estimates the best
turn-on and turn-off times for maximizing the
efficiency of the heating system in this regard,
without compromising comfort, by learning the
building dynamics related to this function. In
this application, a two dimensional input space
involving the building and the ambient tempera-
tures is used. It has been shown that by making
the algorithm three dimensional and adding the
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Figure 1. One cell of the input space. Distances of
the input point (X1,Y1) from the edges are Di.

wind speed as a third input variable, the perfor-
mance is improved especially for windy regions
(Hizal 1997). The use of this learning algorithm
in a gain scheduling adaptive control scheme has
also been studied (Hizal 1999).

The algorithm has the estimation and the
training stages. Estimation is performed by mul-
tidimensional linear interpolation, using a num-
ber of ”support” values. Training is based on the
correction of these support values according to
the estimation error and to the degree of their
contributions to the estimation process.

In the original two dimensional form of the al-
gorithm, the ranges of the input variables X and
Y are subdivided into m and n regions, respec-
tively, thus generating an (m+1) by (n+1) dimen-
sioned grid, at the intersections of which the sup-
port values will be located. The estimation at a
particular input point (X1,Y;) gives the estimate
Zp = tg(X1,Y1). The actual Z value Zp; must
be measured at the time of the estimation (as in
the engine characteristics application) or after us-
ing the estimate (as in the building automation
application) so that the error can be used in the
training stage following this estimation.

A single cell of the input space grid is shown
in Figure 1. For the estimation stage, first it has
to be determined in which cell the input point
(X1,Y;) is, since the support values to be used
are the ones that are at the corners of this par-
ticular cell, namely, Z; (i =1,...,4). The distances
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of the point (X1,Y;) to the corners of the cell are
D; i =1,..4). Two linear interpolations in the
same direction are carried out at the two opposed
edges of the cell, resulting in the auxiliary values
Z 4 and Zp which are used for the third interpola-
tion in the other direction, completing a bilinear
interpolation giving the estimate Zg. This pro-
cedure at a particular time step k is represented
by the following equations where the time index
k is omitted for the sake of clarity.

Za =21+ (Zy — Z1)D1 /(D1 + D5) (1)
Zp = Zz+ (Zs — Z3)D1 /(D1 + D>) (2)
Zp =Za+ (Zp — Za)D3 /(D3 + Dy) (3)

For the training stage, the actual value Zj; is
used to calculate the ”error factor” F which is the
relative error as defined below.
F=(Zy—-2g)|Zg (4)

The four support values Z; are corrected ac-
cording to the error factor F and by using weights
K; that represent their contributions to the esti-
mate. The weights K; are calculated as follows,
as functions of the distances D;.

Ky = [D2/(D1 + D2)][D4/ (D3 + Dy)] ()
Ky = [D1/(D1 + D2)][D4/(D3 + Dy)] (6)
Ks = [D2/(D1 + D2)][Ds/(D3 + Dy)] (7)
Ky =[D1/(D1 + D2)][D3/(Ds + Da)] )

Equation (9) below gives the correction expres-
sion for the i’th support value, its new value
Z;(k+1) being calculated from the quantities at
the time step k.

Zi(k +1) = Zi(k)[1 + Ki(k)F (k)] 9)

Some attributes of this nonlinear algorithm is
investigated in (Hizal 1998), like the investigation
of the effects of the addition of a ”convergence
constant” or ”forgetting factor” p to the algo-
rithm (Astrom and Wittenmark 1989), so that
the training rule (9) becomes

Zi(k +1) = Zi(k)[1 + pkKi (k) F (k)] (10)

and the investigation of the effects of the cell size.
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As pointed out in (Hizal 1998), repeated train-
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p = 2 constitutes a lower bound for the range
of p values that can result in unstable operation,
under any distribution of the training points over 500}
the input space.

Proof: Counsider a point (X1,Y}) in the input 0

space such that the trained support values (those
with nonzero weighting constants) Z; have equal
weighting constants K due to symmetry. Starting
from equal initial support values, all Z; = 7 will
satisfy the same linear difference equation

Z(k+1) = Z(k)[1+pK(Zm (k) - Z(k))/Z(K)](11)

which can be obtained from Egs.(1-8, 10) un-
der the stated conditions, with zero initial val-
ues. Taking the z-transform of (11), the z-transfer
function G(z) = Z(z) / Zy(z) can be written as

G(2) = pK/(z = (1 - pK))

whose pole is at p = 1 - u K. As the pole magni-
tude must be smaller than unity for stable opera-
tion (Astrém and Wittenmark 1984), the follow-
ing limits are found for u to preserve stability.

(12)

1-pK|<1 or O0<pK <2 (13)

The worst case regarding stability, among all
the operating conditions, is when a support point
is trained repeatedly (when the input point re-
peatedly coincides with a support point), because
then the weight K for the trained point is at its
maximum value of unity, forcing p to have the
minimum value for stability. Therefore, as a re-
sult of (13), u < 2 leads to stable operation under
any distribution of the training points over the in-
put space.

3. Jet Engine Characteristics

Since reliability and efficiency issues are of ut-
most importance in jet engines, many variables
can be considered as the dependent variable to be
monitored by the learning algorithm in a jet en-
gine. Two outstanding candidates are the thrust
and the fuel consumption.
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Figure 2. The operating region of the JT3D-1 engine
in the Mach number - Thrust plane.

For any one dependent variable to be moni-
tored, a large number of independent input vari-
ables exist. However, due to a result of the =
theorem which states that any function of n vari-
ables involving q fundamental quantities such as
length, mass, temperature, time, can be reduced
to a function of (n - q) dimensionless groups (Hill
and Peterson 1967), these relationships can be
substantially simplified, making their realization
with a small input space dimensionality feasible.

Generally, the most important variables for the
characteristics of a particular jet engine are the
Mach number, the ambient pressure and temper-
ature, the shaft speed, the thrust, the thrust spe-
cific fuel consumption, and the air flow rate (Hill
and Peterson 1967, Mattingly et al. 1987, Kerre-
brock 1992, Treager 1996) .

The thrust T for a particular turbine engine can
be expressed as a function of the Mach number M,
the shaft speed N, the ambient-to-standard tem-
perature ratio 6, the ambient-to-standard pres-
sure ratio 0, as (Hill and Peterson 1967)

()

T / 6 and N /8 are the ”corrected” thrust
and shaft speed respectively.

As seen from this expression, the surface rep-
resenting the thrust variable can be formed as a
function of only two inputs by an algorithm with

(14)
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Figure 3. Development of the 3 dimensional TSFC surface as a result of learning, under the conditions Dg = 2

and p = 1.

a two dimensional input space, for a wide range
of operating conditions.

The ”Thrust Specific Fuel Consumption”
(TSFC) for a jet engine is defined as the fuel flow
rate per unit thrust.

TSFC = (dmy/dt)/T (15)
where my is the amount of fuel used. In this case,
altitude has a direct effect through its effects on
the combustor efficiency. As the effect of the alti-
tude on combustor efficiency is quite complicated,
its effect on TSFC is not as clear as that on thrust.
If the effects of the combustor efficiency 7. could
be ignored, TSFC would be written as a function
of M and N / /8 similar to (14), but actually the
product 7.(TSFC) can be written as in (14), and
the altitude has to enter the expression as a mea-
sured variable to give 7, through experimental
relations (Hill and Peterson 1967).

The characteristics used in the simulation are
those of JT3D-1, a typical turbofan engine by
Pratt & Whitney Aircraft, United Aircraft Cor-
poration, at an altitude of 10700 meters, given as
estimated two dimensional curves in (Kerrebrock
1992).
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4. Application of The Learning Algorithm

A reference matrix Mg is produced from the
two dimensional characteristic curves of TSFC as
a function of M and T, by a routine that finds
the reference TSFC values at any point within
the M and T ranges considered, by bicubic inter-
polation. The Mach number range considered is
(0,1) and the thrust range is (445,2225) dekaNew-
tons. Within these ranges, some parts are out
of the operating region due to the idle limit and
the maximum power limit (Figure 2). During the
generation of the input points (M,T) randomly, a
Mach number value is selected in the range (0,1)
first, and then a thrust value is selected observing
the upper and lower thrust limits for the partic-
ular Mach number selected.

The support values are also stored as a matrix,
Mg. Three cell sizes (?support matrix densities”
as referred to here) for the support matrix Mg are
used for comparison of the cell size effects. These
densities are called Dg= 1, 2, and 3 corresponding
to the support matrix dimensions 6x5, 11x9, and
21x17, respectively, all covering the same M and
T ranges given above, resulting in 20, 80, and
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Figure 4. Variation of Ega in time, for Dg = 3 and
the three p values.

320 as the numbers of cells, halving the linear
cell dimensions with each density increase.

For the convergence constant u, the three val-
ues 0.4, 1, and 2.5 are used, with y = 1 corre-
sponding to the original form of the algorithm.

The main points of concern are the convergence
speed, the steady-state accuracy, and the steady-
state error variances. These are investigated as
functions of the support matrix density Dg and
the convergence constant p.

5. Simulation Results

The development of the three dimensional ”es-
timated TSFC” surface in time for the conditions
Ds = 2 and g = 1 and uniform initial support
values of 0.7 is given in Figure 3.

The convergence speed is best evaluated by ob-
serving a learning curve produced as the variation
of the average squared error Eg 4 in time. The av-
erage is over all the support values at a given time
step k, i.e.,

Esa(k) = [i;(Mg(i, j) — Msi(i,5))*]/ns (16)

where Mgy stands for the support matrix at time
step k, and ng is the number of support values.
The learning process is started by making the
initial support matrix Mg(0) equal to the ref-
erence matrix Mp with +(0 - 10)% uniformly
distributed random errors added, though this did
not make great differences in convergence times in
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most cases, with a criterion such as Eg4 = 10~*
because when a uniform initial matrix is used,
the level of accuracy corresponding to the above
M5(0) (on the order of 2x1073) is reached quite
fast compared to the number of steps required to
reach the given Eg4. Figure 4 shows the varia-
tion of Egy4 in time, with the three pu values, and
with Dg = 3. Figure 5 shows the same variable
with the three Dg values, with 4 = 0.4. As ex-
pected, larger convergence constant p values re-
sult in greater convergence speeds. On the other
hand, greater support value densities decrease the
speed, but not in proportion with the number of
support values. This is interpreted as the effects
of the cells at the edges and corners. A support
point that is away from the edges is trained by
inputs within the 4 cells that the support point
belongs to. This number is 2 for a support at
an edge, and 1 for a support at a corner. For a
uniformly distributed (X1,Y), these supports are
trained with average relative frequencies of 1, 0.5
and 0.25, respectively, affecting their individual
rates of convergence. When the number of cells
is less, this effect is more pronounced. Compared
to an infinite sized support matrix, an algorithm
with a finite number of cells mxn would have its
speed reduced by the factor a given by

a = [(m-1)(n—-1)+0.5(2(m—1)
+ 2(n—1))+0.25(4)]/[(m+ 1)(n + 1)]

(17)

which is the relative speeds weighted by the pro-
portions of the numbers of supports for the three
categories. This phenomenon is observed at the
earlier stages of the learning process, e.g., when
Es4 halving times are compared, and also as the
apparent correction of the supports at the edges
taking longer time while the support matrix is
being watched graphically during a run. At the
later stages the smaller error potential of greater
support matrix densities outweighs this effect and
it is possible for a denser support matrix to settle
in a smaller number of steps, as shown in Fig-
ure 6. In this figure the convergence measure is
taken as the average number of steps to reach the
level Eg4 = 10™* which can be attained by all
the support matrix densities used.

During several trials for stability, sporadic in-
stability was observed for p > 3.5 with all support
matrix densities used. However, during the large
number of runs with p < 2.5, no instability was
encountered.
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The Eg4 values used for convergence speed
evaluation reflect a bias in the steady state, be-
cause the average squared errors are evaluated at
support points only. Because of the curvature of
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Figure 5. Variation of Esa in time, for g = 0.4 and
the three Dg values.
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the generated surface and the finite cell size, the
algorithm has to make the support values lower
than the actual values at these points, under the
effect of the points towards the centers of the
cells. When the errors are evaluated over the en-
tire input space, the average is practically zero,
so the estimates are unbiased in general, though
they are locally biased. These local biases are re-
duced by using greater support matrix densities,
i.e., smaller cells.

Also because of these biases, local adaptations
conflict with each other, causing support value
variations in the steady state. This effect is more
pronounced with a larger u value, so that small p
values result in smoother operation in the steady
state. The error variances reflect this effect. The
support value matrix density has much greater
effect in this respect, however.

Small p values are favorable also for the case
with measurement noise in the input variables,
because of the more pronounced low pass filtering
effect resulting from such values. Indeed, consid-
ering the discrete transfer function (12) for repet-
itive training at one point, the amplitude ratio
from the corresponding frequency response func-
tion is (Leigh 1985)

|G(jw)| = uEK/[(cos(wTs) — (1 - uK))?*

+(sin(wTs))?]/? (18)
where Tg is the sampling period. This function
exhibits low-pass character if 4 K < 1. Its break-
point frequency at -3 decibel amplitude ratio can
be found by |G(jws) | = (1/2)'/? as

wp = cos™[L+ (uK)*/(2uK — 2))/Ts

pK < 0.8284 (19)
and its minimum amplitude ratio which is at the
Nyquist frequency of wy =7 / Tg can be found
by substitution of wy in (18), as
|Glmin = pEK/(2 — pK) (20)

Both of these functions are monotonically in-
creasing functions of the convergence constant p,
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Figure 7. Typical steady state responses in terms of
Esa, given for Ds =1 and with the two p values 0.4
and 2.5, to depict the role of u in steady state.

indicating the greater low-pass effect of a smaller
u value.

Figure 7 compares typical steady state Eg4 re-
sponses for Dg = 1, with ¢ = 0.4 and p = 2.5.
Steady state time averages of the absolute values
of the error factors F, which is denoted by F 44
are given in Figure 8, and their variances are given
in Figure 9. As pointed out in (Hizal 1998), the
steady state errors decrease approximately as the
square of the cell size, as can be seen from Figure
8. This is because of the geometry in Figure 10,
which assumes circular variations of the actual
values in a vertical plane, within distances com-
parable to cell sizes. In this case, the maximum
error h can be given as an approximate function
of the radius of curvature r and the support value
distance A as (Hizal 1998)
h= A%/(8r) (21)

The variances of F4 4, on the other hand, can
be seen to change by about an order of magnitude
with a decrease in cell size by a factor of 1/2.

For steady state investigations, "reverse train-
ing” can be used in simulations to reach steady
state conditions in a much smaller number of
steps. Starting with Mg = Mg with the u value
whose steady state effect is to be investigated, the
steady state error conditions are reached from be-
low.
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Average Absolute Relative Errors at Steady State
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Figure 8. Faa, the average absolute value of the
error factor F, as a function of Dg and pu.

Usual error analyses involving algorithms
whose convergence constants tend to zero in time
are not valid in this case, for the following two rea-
sons. This algorithm has to have a nonzero con-
vergence constant g at all times, because adaptiv-
ity must be preserved to allow the system to fol-
low any characteristic surface variations in time.
Also, the main error source in this system is the
use of interpolation, as mentioned above.

6. Practical Considerations

In the mechanization of such a scheme in prac-
tice, a number of additional issues may need to
be considered.

One point to consider is the acquisiton of the
measured variables in ”steady state” operation.
In the example system, for instance, particularly
for the thrust and fuel flow rate measurements,
a number of consecutive samples will need to be
checked to see if their variations are below a cer-
tain limit before accepting the measurements as
7static”, to prevent the engine dynamic transients
from corrupting the static characteristics data.

Another point of practical concern is the
nonuniform training that will exist during actual
jet engine use. This will result in the more fre-
quently encountered regions of the characteristic
surface or hypersurface to be trained faster and
better, though a buffer memory can be used to
store and then repeatedly apply the data from
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Figure 10. Geometry used in the interpretation of
the F44 dependence on cell size.

the less frequently used regions. High sampling
rates could obviate this measure, however.

It is possible to use a nonuniformly spaced grid
in the input space for defining the support ma-
trix. By making the supports denser where the
curvatures of the generated surface are greater,
a smaller number of supports can be used for a
certain maximum error level. Though this does
not seem justifiable for the TSFC surface consid-
ered, it may prove useful for some other functions
where the curvature may vary over a broad range.

For the example system in particular, the
thrust is assumed to be measured directly, yet it
is not common for aircraft to have in-flight mea-

surement facilities for thrust, which is usually in-
ferred from other measurements. However, it is a
technically feasible measurement (e.g. by strain
gages or load cells) and it can be added for such
a purpose.

7. Conclusions

The learning algorithm is presented and stud-
ied in general, and the automatic derivation and
monitoring of a particular characteristic surface
for a jet engine is investigated as a usage exam-
ple. The results of the simulations for the exam-
ple system give additional clues about the behav-
ior of this learning algorithm.

In particular, the stability, the convergence
speed, and the accuracy issues for the algorithm
are addressed. A theorem on stability is given.
The effects of the support matrix size and the con-
vergence constant on the speed of convergence are
considered, and the effects of the cell size and the
convergence constant on the accuracy are men-
tioned. The effect of the convergence constant on
the accuracy is related to the noise rejection prop-
erties of the algorithm, which is shown to improve
as the convergence constant is decreased.

The algorithm has mainly two parameters to
decide on: the cell size (or the support matrix
density), and the convergence constant. The cell
size has greater influence on the steady state ac-
curacies, determining the minimum errors that
can be achieved, but an increase in the matrix
size will slow down the convergence and require
more memory space. With modern digital equip-
ment neither is likely to be a restricting factor
since memory sizes of interest are quite small and
the sampling rates can be high enough to com-
plete a large number of steps within a short time.
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Although the accuracy requirements will vary ac-
cording to usage, the intermediate support ma-
trix density used in the example system seems
to be a suitable choice for this purpose. Choice
of the convergence factor will depend on the re-
quired learning speed, but in practice, measure-
ment noise is more likely to dictate its value, plac-
ing an upper bound for it. On the other hand, too
small a convergence constant would cause diffi-
culty in following the variations of the surface in
time, especially in case of a rapidly developing
anomaly, limiting its value as a post-failure diag-
nostic aid. Judging in general terms, all conver-
gence constant values tried gave reasonable per-
formance with the example system, with values
beyond 3.5 risking instability and values beyond
2.5 having a tendency to create excessive oscilla-
tions especially in the transient phase of the learn-
ing process where the error factors F are large.
The results given here can help as guidelines for
a design with a specific purpose.
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