ARI The Bulletin of the Istanbul Technical University
Communicated by Ahmet Hamdi Kayran

VOLUME 53, NUMBER 1

Combined Wavelet-Neural Fault Classifier
for Power Distribution Systems

Oben Dag
Department of Electrical Engineering, Istanbul Technical University, 34469 Maslak, Istanbul, Turkey
Canbolat Ucak*
epartment of Electrical Engineering, Istanbul Technical University, 34469 Maslak, Istanbul, Turkey
(Received 29 August 2002)

This paper presents an integrated design of a fault classifier for distribution systems using a hybrid Wavelet-
artificial neural network (ANN) based approach. Data for the fault classifier is produced by PSCAD/EMTDC
simulation program for 34.5 kV Sagmalcilar-Maltepe distribution system in Istanbul, Turkey. It is aimed to
design a classifier capable of recognizing ten classes of three-phase distribution system faults. A database of line
currents and line-to-ground voltages is built up including system faults at different fault inception angles and
fault locations. The characteristic information over six-channel of current and voltage samples is extracted by
the wavelet multi-resolution analysis technique. Afterwards, an ANN-based tool was employed for classification
task. The main idea in this approach is solving the complex fault (three-phase short-circuit) classification problem
under various system and fault conditions. A self-organizing map, with Kohonen’s learning algorithm and type-
one learning vector quantization technique is implemented into the fault classification study. The performance
of the wavelet-neural fault classifier is presented and the results are analyzed in the paper. It is shown that the
technique presented correctly recognizes and discriminates the fault type and faulted phases(s) with a high degree
of accuracy for different location and time of occurrence in the simulated model distribution system.

Keywords: Distribution systems, fault classification, wavelet multi-resolution analysis, artificial neural net-
works, self-organizing feature map, learning vector quantization.

It would be desirable if the data collection pro-
cess could be further automated and the moni-
toring device not only monitors and records the
disturbances, but also classifies them according to
appropriate criteria. This would help to immedi-
ately detect a disturbance or fault and then make
the appropriate decision to eliminate the fault.

1. Introduction

The quality of electric power has become an
important issue for electric utilities and their cus-
tomers. Customers, in particular, have become
less tolerant of power quality disturbances and
faults due to the fact that these phenomena de-

grade the performance and efficiency of customer
loads. To improve the quality of power, elec-

tric utilities continuoncly monitor nower deliv-
LriC Uilivles Continuousyy monivor power Geilv

ered at customer sites. Disturbance waveforms
are captured and recorded continuously using
power monitoring instruments. However, these
monitoring instruments lack the ability to distin-
guish between events (without the intelligence).
Therefore, existing methods to analyze and iden-
tify power disturbances are delicate and laborious
since the primary methods are based on visual
inspection of the waveforms; it is the duty of the
power quality engineers to categorize the enor-
mous amount of data for further analysis manu-
ally [1], [2].
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Consequently, this would minimize the customer
displeasure and provide obtaining optimum effi-
ciency from the power system.

There is usually a high volume of recorded
event data to be processed and classified when
dealing with power quality analysis. This makes
it very difficult and time-consuming to interpret
the data and provide useful operations. Large di-
mensionality of the data is one general problem
that exists. Moreover, a major concern arising
from the classification of a large data set is the
complexity of the discrimination process. Due
to changes in the disturbance type, duration and
its frequency components (which may overlap in
time), the parameters in the discriminant model
become highly variable. This leads to a consid-
erable deterioration in classification performance
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of the classifier. To overcome this problem, it is
often necessary to extract the key features from
the raw data to obtain a manageable size of data.

Generally, the Fourier techniques are being
used to transform the raw data into the frequency
domain. These methods are very familiar to the
engineering community. However, these meth-
ods are not without limitations. For example,

done dealing with the fault classification problem
by the artificial neural network (ANN) training
techniques [5], [6], [7], [8], [9]. ANN training tech-
niques can be categorized as supervised, unsu-
pervised, and reinforced learning algorithms. For
example, one of the typical supervised learning
algorithm is back-propagation (BP), which em-
ploys a nonlinear regression technique to achieve

the Fourier series requires periodicity of all the
time functions, and Fourier transforms are inef-
ficient in capturing short-term transients. Ad-
ditionally, traditional Fourier analysis does not
consider frequencies that evolve with time (non-
stationary signals). These limitations often make
it difficult to analyze the transient events that are
included in the disturbance waveforms. One tech-
nique that solves the problems to some level is the
windowed Fourier transform (short-time Fourier
transform-stft). However, it has the limitation
of a fixed window width that means the trade-
off between frequency resolution and time reso-

minimum error goal. Even though it has been
reported that BP is adequate for pattern classifi-
cation problems owing to its high discrimination
power and excellent generalization ability [10],
the number of classes is limited in practise to
apply it directly to large-set classification prob-
lems without preclassification. In other words,
as the number of classes increases, the computa-
tional complexity of the learning problem quickly
reaches unmanageable proportions. Furthermore,
it is very difficult to determine the structure and
size of the network for the classification of large-
sets and complex patterns. It is presented in [11]

lution (depends on the signal analyzed), must be
fixed in order to capture a particular case. A wide
window, for instance, gives good frequency reso-
lution but poor time resolution, whereas a nar-
row window gives good time resolution but poor
frequency resolution. A different method is the
Wavelet analysis, which provides greater resolu-
tion in time for high frequency components of a
signal and greater resolution in frequency for the
low frequency components of a signal. Wavelet
analysis techniques have been applied with suc-
cess in a wide variety of research areas such as
signal analysis, image processing, data compres-
sion, de-noising and  numerical  solution of
differential equations. The wavelet analysis tech-
niques have been proposed extensively in the lit-
erature as an approach for fault detection, local-
ization and classification of different power sys-
tem transients [3], [4].

When a fault occurs in a distribution sys-
tem, disturbance signals like transients would be
present in the voltage and current signals. These
high-frequency parts of the signals carry essential
information that could be used in classifying the
fault types. By careful observation of current and
voltage waveforms and frequency spectra, some
characteristics may be identified for each fault
type. Wavelet transform provides the task of ex-
tracting the information in the current and volt-
age waveforms.

In the literature, a great deal of work has been
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that for a fault classification study the classifi-
cation rate is only about 79%. However, when
a fault classifier is based on an unsupervised
(i.e., Kohonen ANN) or combined supervised and
unsupervised training technique, such as self-
organizing mapping (SOM), radial-basis function
(RBF), counter propagation network (CPN), the
classification rate can reach a high level of about
95%. In [12], Mladen Kezunovic and Igor Rikalo
designed a system to detect and classify faults
using a combined supervised-unsupervised neural
network based on self-organizing for a twelve-class
faults at transmission lines. They used a neural-
network algorithm with ISODATA clustering al-
gorithm. For their system, they obtained a clas-
sification rate of 95.93%. This result shows how a
combined supervised-unsupervised scheme based
on self-organizing is appropriate for fault classifi-
cation studies. Another ANN training technique
is reinforced learning algorithm, i.e., a genetic al-
gorithm that is used to search the weight space of
a multilayer feed-forward ANN without the use
of any information. The basic concept behind
this technique is that complete sets of weights are
coded into a string, which has an associated fit-
ness finding attribute for the optimal weight. Al-
though the reinforced learning performs a global
search and therefore minimizes the possibility of
getting stuck in local minima, the training is
very time-consuming; classification rate is around
85%.
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In this paper, a new approach to the fault clas-

electro-magnetic transient simulation program on

sification studies is proposed to further improve

a distribution system. To enhance the compe-

the classification performance. The main idea is
to design a classifier capable of recognizing ten
classes of three-phase system faults. It is aimed to
design an intelligent structure that will be able to

tence of the classifier system, it is necessary to
pre-process the event signals to extract charac-
teristic information. Besides, it is impractical
to use the raw waveforms directly as input for

distinguish the fault type using the captured and

a neural network. Thus, certain characteristics

recorded six-channel current and voltage signals
from the power system. Therefore, this will pro-
vide automation in the power disturbance analy-
sis and identification process. As the type of the
fault is identified by the intelligent structure, pos-
sible solutions can be quickly determined to solve
the problem. So this scheme will gain speed in the
power quality study process. For this, first the
34,5 kV Sagmalcilar-Maltepe distribution system
in Istanbul, Turkey with a 12-bus configuration is
simulated by PSCAD/EMTDC and a data-set of
six channels current and voltage signals for each
of the fault categories is generated. Then the im-
portant characteristics that distinguish each class
from another are obtained with the wavelet multi-
resolution analysis technique. After the unique-
ness of each signal is found, an ANN-based clas-
sification tool was employed for the classification
task. The proposed method utilizes the concept
of supervised learning and unsupervised learning
based on self-organizing maps. The ANN tech-
nique provides the ability to classify each fault
classes by identifying different patterns of the as-
sociated voltages and currents. The results of the
study are summarized in the conclusion part of
the paper.

This paper is organized as follows. An intro-
duction to feature detection and extraction tech-
nique is presented in Section 2. Section 3 presents
the SOM based adaptive neural classifier. Ap-
plication of the proposed fault classifier on the
34.5 kV Sagmalcilar-Maltepe distribution system
in Istanbul, Turkey is presented in Section 4.
Finally, the conclusion is presented in Section 5.

2. Feature detection and extraction

The neural network approach to the detection
and classification of system faults consists of three
general tasks; generating sets of line current and
line-to-ground voltages, using these sets to train
a neural network, and testing the network on sep-
arate sets of line currents and line-to-ground volt-
ages. The preprocessor is an internal part of this
scheme. Training cases were generated using an

84

of the waveforms must be identified and reduced
to quantitative form to make it possible for the
network to distinguish between faulty conditions.

Generally, the primary objectives of feature ex-
traction are; (i) To represent the typical charac-
teristics of categories, and (ii) to extract the dis-
criminative information between categories. In
the case of this study, feature extraction is per-
formed as a pre-processing operation that trans-
forms a pattern from its original form to a new
form suitable for further analysis. So, the oper-
ation in this study reduces the high dimension-
ality of the initial system description. The fea-
ture extraction method proposed in this paper
is based on the wavelet MRA technique, which
maps the raw data generated by EMTDC into a
small size of interpretable features. The MRA is
a tool that utilizes the Discrete Wavelet Trans-
form (DWT) to represent a time-varying signal
in terms of its frequency components [13]. It es-
sentially maps a one-dimensional signal of time
into a two-dimensional signal of time and scale.
Wavelet analysis involves representing signals in
terms of simpler, fixed building blocks (wavelets)
at different scales and positions. The main idea
is to develop representations of a complicated sig-
nal f(t) in terms of its orthonormal basis, which
are the scaling and wavelet functions. These two
functions are translated and scaled to produce
wavelets at different locations (positions) and on
different scales (durations). Fine-scale wavelets
are narrow and brief; coarse-scale wavelets are
wide and long lasting. The wavelet functions rep-
resent the high frequencies corresponding to the
detailed parts of a given signal, and scaling func-
tions represent low frequencies or smooth parts
of the signals. These functions can be scaled and
translated to decompose f(t) and represent it at
different resolutions or scales. This decomposi-
tion technique is called multi-resolution signal de-
composition (MSD). In the next paragraphs, a
brief description of the wavelet transform tech-
nique in the context of fault classification problem
in this paper will be given. A complete descrip-
tion of the DWT and MSD theory can be found
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tures. Some bands are intensive to some types of
fault. The energy content of the scale signals rel-
ative to the given signal changes depending upon
the type of disturbance. By analyzing these fea-
tures of the detail signals, different types of faults
can be detected and classified. Parsevals theo-
rem relates the energy of the signal to the energy
in each of the expansion components and their
wavelet coefficients if the selected scaling function
and the wavelet function form an orthonormal ba-

decimation by factor 2.

in [14].

Figure 1 shows the block diagram of the
Discrete Wavelet Transform implemented with
discrete-time filters and subsampling by two. It
illustrates the decomposition of ¢g(n), a recorded
digitized time signal (which is a sampled version
of f(t)), into its detailed dj(n) and smoothed
c1(n) signals using filters g(n) and h(n), respec-
tively. Filter g(n) has a high-pass filter response.
Thus, the filtered signal d; (n) is a detailed version
of co(n) and contains higher frequency compo-
nents than the smoothed signal ¢; (n), because fil-
ter h(n) has a low-pass frequency filter response.
The digitized time signal co(n) can be written as

co(n) = zk: h(k — 2n)co(k)

+ % 9(k = 2n)co(k). 1)

One iteration of the scheme in Figure 1 on the
first low-band creates a new low-band that corre-
sponds to the lower quarter of the frequency spec-
trum. Each further iteration halves the width of
the low-band, but due to sub-sampling by two, its
time resolution is halved as well. The decompo-
sition of ¢p(n) in Figure 1 is a first-scale decom-
position. Higher-order decompositions are then
performed in a similar manner. At each iteration,
the current high band portion correspond to the
difference between the previous low-band portion
and the current one, which is a pass-band.

The purpose of feature extraction task in the
fault classification system in this study is to iden-
tify specific signatures of the fault types in the
system. The wavelet transform breaks down the
signal into different time-frequency scales. Each
scale represents the signal in the corresponding
sub-band. By using wavelet analysis, the sub-
band information can be extracted from the sim-
ulated waveforms, which contain useful fault fea-
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sis. This means that the energy of the signal f(t)
can be partitioned in terms of the expansion co-
efficients as in [3]:

/ FPd =
£ Y k)P,

j=0k=—00

S o)

k=—o00

2)

where d;(k) is the detail coefficients at scale j,
and co(k) presents the last approximate coeffi-
cients. The energy of the analyzed signal is por-
tioned at five resolution levels according to Equa-
tion 2. The standard deviation can be considered
as a measure of the energy for a signal with zero
mean [3]. For this reason, the standard deviations
at different resolution levels of the signal will be
used to form the feature vector to classify differ-
ent fault classes.

3. Adaptive pattern classification

A literature search in [15] shows that most of
the ANN studies for fault classification are based
on multi-layer, feed- forward nets. In the case
of the typical supervised back-propagation (BP)
network, sets of associated input-output pairs are
presented to the ANN that learns a model of the
mapping between input and output. However,
training of a BP network is very time consum-
ing, needs very large training sets, and easily gets
stuck on local minima. Furthermore, it can be
difficult to retrain the ANN with new training
data. As a result, it may not be sufficient for the
task of fault classification. Another approach for
the ANN application for fault classification is us-
ing data self-organization obtained through the
use of unsupervised learning. Here, the task of
the classification network is to cluster the faults
into separate classes. So, it can be viewed as
a pattern recognition problem. Self-organization
refers to the specific learning method without ex-
ternal examples. This is also called unsupervised
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learning. Given a set of input patterns, neighbor-
ing processing units (neurons) in a self-organizing

can be used as a convenient visualization surface
for showing different features of the SOM and the

net develop into detectors of specific categories of
patterns. So, each local neuron-group acts as a

data, i.e. the cluster structure.
The SOM reflects variations in the statistics

decoder for the inputs [16]. After the learning

of the input distribution. Regions in the input

phase through unsupervised learning, the ANN

space from which sample vectors are drawn with

is ready for the classification task, where the fea-

a high probability of occurrence are mapped onto

tures selected from the input data are assigned
to individual classes. Although a self-organizing
map is equipped to perform the role of a classifier,

larger domains of the output space, and therefore
with better resolution than regions in the input
space from which sample vectors are drawn with a

it is recommended in literature ([17], [18]) that
for best performance it should be accompanied
with a supervised learning scheme. Computation
of the self-organizing map (feature map) may be
viewed as the first of two stages for adaptively
solving a pattern classification problem. The sec-
ond stage is provided by learning vector quanti-
zation, which performs a mechanism for the final
fine-tuning of a feature map. The combination of
a self- organizing map and a supervised learning
scheme forms an adaptive pattern classification
that is hybrid in nature [16].

In this study, a self-organizing map (SOM),
with Kohonens learning algorithm and learning
vector quantization (LVQ) technique [17], is im-
plemented into the fault classification study. The
SOM is intended to discover significant patterns
or features from a set of feature vectors obtained
by the data preprocessor. SOM obtains the in-
formation hidden in high dimensional data that
is otherwise difficult to interpret. The SOM con-
verts the complex nonlinear relationship between
high-dimensional data into a simple geometric re-
lationship on a low-dimensional display. So it is a
vector quantization technique: it compresses the
information, while preserving the most important
topological relationship of the primary data ele-
ments.

The SOM consists of neurons organized on a
regular low-dimensional grid. Each neuron rep-
resents a d-dimensional weight vector (prototype
vector, codebook vector, model vector) where d
is equal to the dimension of the input vectors.
The neurons are connected to adjacent neurons
by neighborhood relation that dictates the topol-
ogy or structure of the map. The SOM is es-
pecially suitable for data analysis because it has
important visualization properties. It creates a
set of prototype vectors representing the data set
and carries out a topology preserving projection
of the prototypes from d-dimensional input space
onto a low-dimensional grid. This ordered grid
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low probability of occurrence. This is the density
matching property of the feature map [16]. So,
this property implies that if a particular region
of the input space contains frequently occurring
stimuli, it will be represented by a larger area in
the feature map than a region of the input space
where the stimuli occur less frequently.

The topology preserving mapping algorithm of
Kohonen is an iterative process for training a class
of neural networks [16]. The learning procedure
is unsupervised or self organizing and is used to
train a network of units or neurons that are ar-
ranged in a low-dimensional sheet-like structure.
A two-dimensional structure for the network is
shown in Figure 2-a; however, it is also possible
to use one or more dimensional structures. The
local topology type of the map can be selected
to be either rectangular or hexagonal as shown
in Figure 2-b and Figure 2-c. The difference be-
tween rectangular and hexagonal lattices is that
in the former all 8 neighbors of a neuron are at
the same distance and in the latter 6 neighbors
of a neuron are at the same distance.

The training procedure of SOM is iterative. At
each training step, a sample vector z is randomly
chosen from the input data set. Distances be-
tween x and all the prototype vectors are com-
puted. The best matching unit (BMU), which
is denoted by b, is the map unit with prototype
closest to x,

(3)

Then, the prototype vectors are updated. The
BMU and its topological neighbors are moved
closer to the input vector in the input space. The
update rule for the prototype vector of unit i, ac-
cording to [17] is

mi(t +1) = mi(t) + ()i (D[ —mi()]  (4)

where t is discrete time, 0 < n(t) < 1 is time
dependent learning rate parameter, hpy;(t) is the
neighborhood kernel function centered on the

= | = wmin = i}
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a discrete data set and fixed neighborhood kernel,
the error function of SOM can be shown to be

N M
E=3% hllzi —myl%,

i=1 j=1

(®)

2-D Lattice

where N is number of training samples in the in-
put data set, and M is the number of map units.
Neighborhood kernel is centered at unit b, which
is the BMU of vector z;, and evaluated for unit j
[18].

In an attempt to accelerate the computation
of the SOM, the batch algorithm is used in this

(@)

00/ 000000 0o0oo0oooooloo paper, [19]. In batch map principle, the whole
0 0/0/0 O O\O\O O O olooooololoo training set is gone through before the map is
0/0/0/0 O\O\O\O O olo|o o0 olojolo o updated. Actually, updating is done by replacing
oX(@) OO 00 O O]0|O0 O O|0|0|0 O the prototype vector with a weighted average over
O\O\O\O O/O/0/0 O 0|00 O O|0|0|0 O the samples, where the weighting factors are the
O O\O\© © O/O/O © © Cl00 000000 neighborhood function values. In each training
COQO000M0OO0O0 QO0O0O000I00 step, the data set is partitioned according to the
(b) © Voronoi regions of the map weight vectors, i.e.,

Figure 2. (a) Two-dimensional lattice of neurons,
(b) Neighborhood (size 1, 2, and 3) of the unit marked
with black dot for hexagonal lattice, (c) Neighbor-
hood (size 1, 2, and 3) of the unit marked with back
dot for rectangular lattice.

winner unit. A typical choice of hy;(t) is the
Gaussian function [16]

[Iry — i[>

hi(t) = exp(— 202()

), ()
where r, and r; are positions of neurons b and i on
the SOM grid, and o(t) is the width of the topo-
logical neighborhood function [16]. It is denoted
as,

(6)

where g is the value of o(t) at the initiation of
the SOM algorithm, and 7 is a time constant. In
Equation 4, n(t) is

o(t) = o exp(—f—l),

(7)

where 7y is another time constant and 7o is the
initial state of learning rate. Both n(t) and o(t)
decrease monotonically with time. In the case of

n(t) = mo eXp(—%),
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each data vector belongs to the data set of the
map unit to which it is closest; this set is called
the Voronoi set. After this, the new weight vec-
tors are calculated as:

> hei(t)z;
mit+1) =5 9)
> hei(t)
j=1
where
b= axgumin{(la; — myl|} (10)

is the index of the BMU of data sample z;. The
new weight vector is a weighted average of the
data samples, where the weight of each data sam-
ple is the neighborhood function value hy;(t) at its
BMU b [16]. This is the way batch algorithm has
been implemented in this paper. In batch version
of the SOM algorithm the order in which the in-
put patterns are presented to the network has no
effect on the final form of the feature map, and
there is no need for a learning-rate schedule. But
the algorithm still requires the use of a neighbor-
hood function [16].

According to Kohonen in [17], if the SOM is to
be used as a pattern classifier the map units are
grouped into subsets, each of which correspond to
a class of patterns, then the problem becomes a
decision process. One should not use the maps as
such for pattern recognition or decision processes
because it is possible to increase the recognition
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Figure 3. Block diagram of fault classification system.
accuracy by a significant amount if the maps are
fine tuned according to a supervised learning al-
gorithm. The SOM algorithm is intended to ap- me(t +1) = me(t) — a(t)[z(t) —me(?)]
proximate input signal values, or their probabil- . . . ]
ity density function, by codebook vectors. If the if 7 ig classified incorrectly; (12)
signal sets are to be classified into a number of
categories, then several codebook vectors usually mi(t+ 1) =m;(t) for i#ec. (13)

represent each class, and decisions made at class
borders will be important, but the identity of the
codebook vectors within the classes is no longer
important. It is possible to define values for the
codebook vectors that directly define the decision
borders between the classes. In this paper, Type
One-Learning Vector Quantization (LVQ1) algo-
rithm [17], is used as a supervised classifier that
uses class information to move the Voronoi vec-
tors slightly to improve the quality of the classi-
fier decision regions. After the hidden patterns
in a set of feature vectors are discovered and ini-
tial classification is performed by the SOM, the
LVQ1 technique is applied to improve the qual-
ity of the classifier. The LVQ1 is called a binary
output pattern classifier since its output is either
zero or one. It is a supervised version of the self-
nrxramzmﬁ map network, suitable nmrhmﬂmr]v for
pattern recognition problems. The purpose of
LVQ1 is to group a set of related input signals
into a finite number of categories based on simi-
larity of the input signals, thereby fine-tuning the
initial map, with the number of such categories
predetermined by the SOM. Fine-tuning the map
is achieved by pulling the codebook vectors away
from the decision surfaces to demarcate the class
borders more accurately. Let m, be the codebook
vector closest to x in the Euclidean metric; this
then also defines the classification of . Then ap-
ply training vectors z, the classification of which
is known. Update the m; = m;(t) as follows:

me(t +1) = me(t) + a(t)[z(t) —me(t)]

if x is classified correctly;

88

Here a(t) is a scalar adaptation gain (learning
rate) (0 < a(t) < 1), which is decreasing mono-
tonically in time. Since this is a fine-tuning
method, its initial value should be selected a small
value, i.e. 0.01 or 0.02 for 100,000 steps [17].

The whole fault classification scheme with the
hybrid neural network structure is demonstrated
in Figure 3. The hybrid neural network forms
a two-level classification approach. The whole
feature extraction-classification system forms a
pyramid, where the number of patterns and con-
nections decrease. The primary benefit of the
two-level approach is the reduction of the com-
putation cost.

The major parts of the system in Figure 3 are
as follows:

i. Data preprocessor that extracts the feature
vectors from the raw six channel signals
generated by the PSCAD/EMTDC on the
model distribution system.

ii. Self-Organizing Map: Unsupervised layer
that clusters the data vectors taken from
data preprocessor to separate clusters.

iii. Learning Vector Quantization: Supervised
layer carrying out the fault classification.

4. Simulation results

The fault classification scheme in this study [15]
is defined as a multi-class problem with ten types
of short-circuit system faults which are AG, BG,
CG, AB, AC, BC, ABG, ACG, BCG, and ABCG.
The letters A, B, C, and G, stands for phase A,
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phase B, phase C, and Ground, respectively. For
example, BG means that single phase to ground
fault occurred in phase B and ABCG means that
three phase to ground fault occurred in the dis-
tribution system.

In this study, a distribution system in Istanbul,
Turkey is simulated by PSCAD/EMTDC simu-
lation program. The network parameter of the
test system illustrated in Figure 4 is provided in
Table 1. The test system is a 12-bus distribu-
tion system with a base power of 100 MVA and a
base voltage of 34.5 kV. All of the test data were
monitored from the secondary of the main step-
down transformer (TRF 1) located at the Sag-
malcilar substation as shown in Figure 4, node 2.
The objective is to monitor the voltage and the

crirrant at only tha 24 E 1V hiia and idantifvy tha
LuLriLccliiv auv Ul.ll.‘y UllT OT.J DV Uus aliu Lucuuu._y uic

fault classes. Each sample of data contained six
channels, a set of three line currents and three
line-to-ground voltages, which is typically what a
recording device would measure in a real system.

4.1. Data generation using
PSCAD/EMTDC

Various fault conditions were simulated using
the PSCAD / EMTDC software, which is an ideal
tool for fault simulation and transient analysis.
Specific events simulated included system faults
at different fault inception angles and fault lo-
cations. The fault inception angles (FIA) used
in the simulations were in the range of 0°~180°.
Since the waves were periodic, it was sufficient
to study angles in the range of 0°~180°. Short-
circuit faults are simulated at various locations
of the test system. Four main types of system
faults were generated: single-phase to ground,
two-phase fault, two-phase to ground, and three-
phase to ground fault.

A database of three channel line currents and
three channel line-to-ground voltages was built
up for various types of faults at different loca-
tions and fault inception angles. Then, a data set
of six channel waveforms was created for further
processing by the data pre-processor. One chan-
nel consisted of a 10 cycle signal generated at an
equivalent sampling rate of 5 KHz (fundamental
frequency of 50 Hz) with 1001 sample points last-
ing 200 msec. Thus, the six-channel data set was
a data matrix of (1001,6).

Figure 5 shows the three-phase line currents
and the line-to-ground voltage signals for a phase
A-phase B to ground fault occurred at bus 4 on
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Figure 5. Typical measured voltage and current pat-
terns. (a) Voltage waveforms, (b) current waveforms.

0.0636 sec. with a fault inception angle of 90°. It
is possible to investigate various types of distur-
bances in this example. An abrupt change can
be observed in both of the current and voltage
signals at the time 0.0636 sec. Figure 5-a shows
a 15% and 50% sag disturbance on the faulted
phase voltages V,(t) and Vj(t) respectively, and
a 30% swell disturbance on the unfaulted phase
V.(t) . There is some high-frequency (HF) dis-
tortion on the voltage waveforms, in particular
on the faulted a and b phases at fault occur-
rence time and this is so by virtue of the fact
that there is a large step change in the a phase
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Table 1

The parameters of the 34.5 kV Sagmalcilar-Maltepe distribution system.

Source 154 kV, 10000 MVA (short circuit), 50 Hz
TRF1

100 MVA, 154 kV/34.5 kV, 50 Hz, Leakage inductance=10.0%
20 MVA, 34.5 kV/10.5 kV, 50 Hz, Leakage inductance=10.0%
19 MVA, cos ¢=0.906, Delta connected

TRF2, TRF3, TRF4, TRF5, TRF6
LOAD 1, LOAD 2, LOAD 3, LOAD 4

LOAD 5 19 MVA| cos $=0.707, Delta connected
CBANK 7.2 MVA, Delta connected
CABLE 1, CABLE 2, CABLE 3, CABLE 4 3 km, 3x(1x240 mm?) XLPE, 20.3/34.5 kV
CABLE 5

3.5 km, 3x(1x240 mm?) XLPE, 20.3/34.5 kV

DAL RA
CABLE1 | CABLE3
! TRF2 ;7 TRF4
LOAD 1 LOAD 3
DA Ry
| II» CABLES
step-down 71»
TRF1 | 2
154 KW TRE S >‘_
A A [> DA A
Infinite Source 12
CABLE 2 || J_ CABLE 4 ||
Data Mo:m'r.or'ng 5 TRF3 ¢ :l\:; EANE 9 TRF3 5
(v.1)
LOAD 5
LOAD 2 LOAD 4

Figure 4. One-line diagram of the 34.5 kV Sagmalcilar-Maltepe Distribution System.
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voltage and the b phase voltage when the fault
occurs. In addition to voltage signals, the faulted
line (I,(t) and Ip(t) ) currents increase greater
than the current (I.(¢) ) in healthy line as it can
be seen from Figure 5-b. In the case of double-
line-ground fault, only the faulty line currents in-
creases greatly: the increase in the magnitude of
the faulted a phase current and b phase current
is larger than ¢ phase current, as expected. The
abrupt change observed in the current and volt-
age signal at 0.0636 sec. enables the classification
scheme to identify the fault phase and fault type.

4.2. Feature extraction using MSD tech-
nique
Since the waveforms have certain distinct char-

acteristics, any successful classification tool would
be able to pick out these relevant features and
associate the waveforms with those of a certain
fault class. Here, fault classification is defined as
a multi-class problem. The ten types of faults
produce a ten-class classification problem. Hav-
ing chosen the classes, the next step in developing
a classifier is the selection and extraction of de-
sired features. This refers to the preprocessing of
raw data into a smaller set of features that would
be the input to the classifier. This is probably the
most critical step in the analysis. The criterion
used in feature selection was to represent the im-
portant characteristics that distinguish each class
from another. Here the wavelet multi-resolution
analysis technique is used as a preprocessing unit
to obtain a smaller set of data to represent each
of the class. The key idea in using wavelet trans-
form analysis (for classifying fault types) is based
on the uniqueness of the wavelet transform coefli-
cients (WTCs) for each type of signals. The sec-
ond technique is descriptive statistics that sum-
marize the data into a small set of numbers that
contain most of the relevant information.

As shown in Figure 6, five-scale MSD analy-
sis based on a dyadic-orthonormal wavelet trans-
form analysis with Daubechies ten-coefficient fil-
ter is performed to ensure that all disturbance
features in both high and low frequency are ex-
tracted. The given input signal in Figure 6-a and
Figure 6-b is the phase-A line current and phase-
C line current respectively, for a phase A-phase
B to ground fault occurred at bus 4 on 0.0636
sec. with a fault inception angle of 90°. The
input signal has 1001 sample points lasting 0.2
sec. The signal consists of 10 cycle data, each
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cycle lasting 0.02 sec. The input signal has been
sampled at 5 KHz. Thus, a five-scale decomposi-
tion of a signal yields 5 detailed signals having a
frequency band of 2.5-1.25 KHz at scale 1; 1.25-

Decomposition at level 5: s =a5 + d5 + d4 + d3 + d2 + d1.

VT
o I D,

o

)

0.625 KHz at scale 2; 625-312.5 Hz at scale 3;
312.5-156.25 Hz at scale 4; 156.25-78.125 Hz at
scale 5 and one smooth signal contains frequency
band 78.125 Hz to DC level.
Figure 6, the MSD technique is adequate in de-
tecting the change in the current waveform at the
fault point. In Figure 6-a and Figure 6-b, the first
finer decomposition levels of the distorted signal
may be adequate to detect and localize the dis-
turbance. However, the other coarser resolution
levels are also used to extract more features that
can help in the classification scheme. (The spikes,
which are seen at the initial and final edges of Fig-
ure 6, are caused by discontinuities or edge effects

As it is seen from

-05E

L L L L L L L ]
100 200 300 400 500 600 700 800 900 1000

Decomposmon atlevel5:s=a5+d5+d4+d3+d2+d1.

: v WAVAYAVAYAVAYAYAY:
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Figure 7. MSD of current waveforms. (a) The volt-
age swell disturbance signal. (b) The voltage sag dis-
turbance signal.
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inherent in the analysis process that can be easily
eliminated by using proper window scheme.)
The voltage waveforms for A-g fault and ABC-
g fault at bus-4 with a fault inception angle of
30°are given in Figure 7-a and Figure 7-b, re-
spectively. The two distorted signals belong to
V.(t) channel.
turbance and Flgure 7-b shows a 50% sag distur-
bance. These are slow varying disturbances. For
both of the disturbances, the abrupt change in the
magnitude of signals when fault occurs is seen at
2, 3, and 4. The rapid oscillation dis-

plﬂ1lT@ 7-a shows a 50% swell dis-

scales 1,
turbances (hlgh frequency) in voltage sag in Fig-
ure 7-b are seen in scales 1 and 2. The change in
the magnitude of the signals is best seen in scales
4 and 5. Although these two waveforms belong
to two different disturbance classes, their detail
components have similar characteristics. And it is
difficult to separate single-phase to ground faults
and three-phase to ground faults, since the differ-
ence between the two fault classes are the sag and
swell disturbances. Therefore the MSD technique
is not adequate in detecting slowly varying events
like voltage sags, swells, and outages owing to the
poor time resolution at low frequency [20]. This
limitation of the MSD can be overcome by track-
ing the voltage signal power, which is its mean

square value [20].

4.2.1. The Feature Vector

The characteristic information over six-channel
current and voltage samples is extracted by the
data pre-processor shown in Figure 3. The six-
channel data set is then reduced to a feature vec-
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current

information

3 channel
voltage

i
et

3 channel
current

EMTDC/PSCAD

current-voltage

information

., -
ModuleT | _ Module IT || =2
MSD -
= 4
5
5 5
5] (5]
= >
o e
@
£ £
s =
=
»=| Module III > 26
=27 L

Figure 8. Data processing and feature extraction architecture.

tor of a small set with 27 parameters. Accord-
ingly, the event feature vector parameters are as
follows:

i. The maximum modulus current for each
three channel before the fault occurs.

ii. The maximum modulus current for each

three channel immediately after the fault

oceurs.

iii. Energy of each current channel over the

0.078-0.156 kHz band range.

iv. Energy of each current channel over the

0.156-0.312 kHz band range.
. Energy of each current channel over the
0.312-0.625 kHz band range.
the

vi. Energy of each current channel over

0.625-1.250 kHz band range.

Energy of each current channel over the

1.250-2.500 kHz band range.

vii.

viii. The signal power for each three channel

voltage waveforms.

The energy for each three channel voltage
waveforms.

ix.

The definition of the above properties is as fol-
lows: The energy of the current signals are parti-
tioned at different resolution levels by the prop-
erty of Parsevals Theorem [3], [21]. The standard
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deviation of the DWT coefficients at the resolu-
tion levels of five-level MSD serves as a represen-
tative of the current signal energy partitioning
and hence to aid in classification [3], [21]. The
standard deviation of five-level detail coefficients
of each current signal channel is computed, yield-
ing fifteen parameters. The magnitude change in
the current waveforms is used as a feature to aid
in classification of fault classes. This yields six
parameters for three channel current waveforms.
To detect and separate slowly varying events like
voltage sags and swells, the voltage signal power,
which is the mean square value, is used [20]. The
calculated mean square value for three channel
voltage waveforms yields three parameters for fea-
ture vector. Furthermore, to enhance the compe-
tence of the classifier system and to extract more
relevant information the standard deviation of
voltage channels is computed, which yields three
parameters for the feature vector. Thus, a set of
27 variables are obtained.

The data pre-processing scheme in Figure 3 is
illustrated in more detail in Figure 8. The pre-
processor extracts pertinent information over 10
cycles of operation. The voltage and current sig-
nals monitored from the secondary of the main
step- down transformer (TRF 1) in Figure 4 are
fed into the signal-processing unit. These mod-
ules extract the features required by the fault
detection and classification network. Figure 8
shows the different modules belonging to the
signal-processing unit. Module I extracts the
five-level MSD detail coefficients of three current
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channels. Here, the MSD approach is based on

ten-fault categories with ANN approach was per-

a dyadic-orthonormal wavelet transform analy-

formed on the Matlab platform running on a Pen-

sis with Daubechies wavelet with a ten-coefficient
filter. The statistical information and other av-
erage quantities are extracted by the Module II
and Module ITI. Module II extracts the distribu-

tium IIT processor at 1 GHz workstation. The hy-
brid pattern classifier in Figure 3 was trained us-
ing 250 different fault patterns. During the test-
ing, the pattern classifier was presented with 100

tion of the energy of the sub-bands obtained by
the Module I. Module IIT extracts the statistical

new fault patterns.
The common properties of the simulations are

information and average quantities of the three
channel voltage and three channel current infor-
mation. The feature collector module collects the
information produced by the previous three mod-
ules. The information is then processed by the
feature collector module and finally the feature
collector module produced a feature vector of 27
parameters, which will be the data for the input
layer of the ANN.

4.3. ANN classifier and simulation results

The whole fault classification architecture is
shown in Figure 9. By changing fault type, fault
inception angle, and fault location, a set of 350
cases were generated using the PSCAD/EMTDC
simulation software. For each fault condition the
raw data was preprocessed by the data preproces-
sor in Figure 8 and then 350 input vectors with
27 variables were generated. Thus, there were a
total of 27 input units, which included the invari-
ant parameters obtained by the data preproces-
sor. All of the different cases were then divided
into two sets, one to be used for neural-network
training and the other for testing. The training
set consisted of 250 training examples (25 exam-
ples per class) with ten fault classes, five fault
locations, and five inception angles. The test set
consisted of 100 examples (10 examples per class)
with ten fault classes, five fault locations, and two
inception angles. Verification of training results
was performed so that the ANN was first tested
with training patterns, which were used in train-
ing, then with samples, which were not used in
training.

Several simulations with varying parameters
(self-organizing map size, map structure, etc.),
related to the hybrid pattern classifier illus-
trated in Figure 9, were performed to obtain the
best performance. The simulations included six
cases, which were obtained with the best perfor-
mance overall the simulations. The Hybrid neu-
ral network classification results are shown in Ta-
ble 2. Feature extraction with the wavelet multi-
resolution analysis technique and classification of
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as follows. The simulations included several map
sizes between 80 map units to 110 map units. A
sheet shaped map with a local topology of rect-
angular and hexagonal structure was used for the
simulations. The map sizes were (8,10), (9,10),
and (11,10). In the first phase, the initial val-
ues of the prototype vectors of feature map were
given according to random initialization and lin-
ear initialization. In random initialization the
map weight vectors were initialized with small
random values. And in linear initialization the
map weight vectors were initialized in an orderly
fashion along the two greatest eigenvectors of
the covariance matrix of the training data. The
neighborhood function for SOM algorithm was
chosen to be an Epanechicov function; because
the performance obtained by this function was
better then the Gaussian function given by Equa-
tion 5. The Epanechicov neighborhood function
is denoted as [19],

haa(t) = max{0,1 - sigma(t) - [|e — mil[}. (14)

The SOM algorithm was implemented in batch
training algorithm given by Equation 9. The
number of training steps for the SOM algorithm
was between 4000 and 5500 iterations. After
adaptation of the map with the SOM algorithm,
it was calibrated according to majority voting
[17]. In the second phase, the classification task
was performed with LVQ1 algorithm to fine-tune
the feature map and to better approximate the
data cloud. For the LVQ1 algorithm, the initial-
ization of the codebook vectors was performed
according to the final state of the SOFM corre-
sponding to each simulation. The learning rate
function for LVQ1 algorithm was selected to be
the inverse-of-time function. The initial learning
rate was 0.01 for all cases. The number of training
steps for the LVQ1 algorithm was between 2800
and 3850 iterations. First the hybrid classifier
(shown in Figure 9) was trained with the training
set that consists of 250 training examples (25 ex-
amples per class). Afterwards, it was tested with
the test set that consists of 100 training examples
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Figure 9. The adaptive pattern classification.

Table 2

Hybrid neural network classification results.

vector

Kohonen MAP LVQ

Class labels

ADAPTIVE PATTERN CLASIFIER

Simulation Description

Classification rate (%)
Training data set Test data set

SIM-1 Random initialized hexagonal structure of (8,10) map 100 89
SIM-2 Linear initialized rectangular structure of (8,10) map 99 92
SIM-3 Random initialized hexagonal structure of (9,10) map 100 89
SIM-4 Linear initialized rectangular structure of (9,10) map 99 91
SIM-5 Linear initialized hexagonal structure of (11,10) map 99 85
SIM-6 Random initialized rectangular structure of (11,10) map 100 88

(10 examples per class). (The data set was nor-

Table 3 shows the computational times for neu-

malized according to logarithmic transformation
to improve numerical accuracy before being used
in adaptive pattern classifier). The logarithmic
transformation is denoted as [19],

X(t) =In{z(t) + 1 — min(z(t))}. (15)

The rated performance of the test data was be-
tween 85% and 92% as shown in Table 2. Among
all the simulation cases, the best classification
value was obtained using the empiric formula of
Kohonen [19]. The number of map units was 80
(54/n = 80) for SIM-2. Here, n denotes the num-
ber of training samples which is equal to 250. Us-
ing rectangular map structure generally increases
the classification rate of the classifier. For exam-
ple, in the case of a (8,10) map the result obtained
by a rectangular lattice (92%) is better than the
hexagonal lattice (89%). Also in the case of (9,10)
map, rectangular lattice (91%) is better than the
hexagonal lattice (89%). Finally in the case of
(11,10) map, rectangular lattice (88%) is better
than the hexagonal lattice (85%). This may be
because the eight neighbors of a neuron are at the
same distance in comparison to the six neighbors
in a hexagonal lattice (as seen in Figure 2-b and
Figure 2-c). Therefore, the map may organize
itself better.
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ral processes. As the number of map unit increase
the computation takes longer time. Note that the
training of the neural structure is a batch compu-
tation which is, especially in Matlab environment,
is significantly faster than sequential computation
scheme.

A visualization of the SOM after training with
the type-one LVQ is demonstrated in Figure 10-
a to give an idea about how a map looks like at
the end of the simulation. This map illustrates
the SIM-2 case in Table 2. It shows the unified
distance matrix (U-mat) of the SOM for the test
data set. The U-mat is a visualizing technique to
analyze the cluster structure of SOM. It shows the
distance between prototype vectors of neighbor-
ing map units and thus shows the cluster struc-
ture of the map. Dark color indicates large dis-
tance between neighboring map units (indicates
cluster borders). Clusters are typically uniform
areas with bright color. Generally, neurons with
the same color belong to the same category [18].
It is possible to distinguish the ten types of fault
categories from the U-matrix.

Another visualization method is hit histograms
[19]. The hit histograms are formed by taking a
data set, finding the BMU of each data sample
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Table 3

Computational times for neural processes.

SOM [min] LVQ [min] Test [sec]

(8,10) map 5 15 <1
(9,10) map 7.3 17.4 <1
(11,10) map 10 20 <1

from the map, and increasing the counter in the
3 rohoanoavoar 1+ a RMTT Tha hit hig

““““““ wehenever it is a BMU. The hit his-
togram shows the distribution of the data set on
the map. In Figure 10-b multiple hit histograms
are shown simultaneously to investigate the test
data set of SIM-2 in Table 2. Here the hit his-
tograms of ten data sets are illustrated accord-
ing to the following match: fault type AG is rep-
resented by number 1, BG is represented by 2,
CG is represented by 3, AB is represented by
4, BC is represented by 5, AC is represented by
6, ABG is represented by 7, BCG is represented
by 8, ACG is represented by 9,and finally fault
type ABCG is represented by number 0. Here
U-mat uses interpolated shading of colors. Inter-
polation is a process for estimating values that lie
between known data points. The size of the hit
histogram determines how many times the cor-
responding map unit is selected as BMU. The
clusters are better represented on the U-mat with
the hit-histograms. Since there is some correla-
tion between the cluster labeled with 4 and the
cluster labeled with 7, the separation between
them is not very clear on the U-mat, but from
hit-histograms, it seems that they correspond to
two different clusters. The same argument can be
done for clusters 6 and 9.

5. Conclusions

A Combined Wavelet-ANN based fault classi-
fier has been investigated for electrical distribu-
tion systems in this paper. Ten fault categories
have been selected to be identified using the pro-
posed approach. It is shown that the technique
presented correctly recognizes and discriminates
the fault type and faulted phases(s) with a high
degree of accuracy for different location and time
of occurrence in the simulated model distribution
system.

The underlying approach of the proposed clas-
sifier is to carry out (preprocessed) waveform
recognition in the self- organizing feature map.
The SOM is intended to discover significant pat-
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L

(b)

Figure 10. U-matrix (a) and hit-histogram (b) of the
SOM for the test data set.

terns or features from a set of feature vectors ob-
tained by the data preprocessor. SOM obtains
the information hidden in high dimensional data
that is otherwise difficult to interpret. The test
results show that the decision regions between dif-
ferent fault classes are quite clearly defined. Com-
bining the information extracted by SOM with a
supervised learning algorithm: type-one learning
vector quantization makes a final decision about
the fault type.

The performance of the proposed fault clas-
sification technique is comparable and close to
the classifiers in the literature. In [12], Mladen
Kezunovic and Igor Rikalo reported that a neu-
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ral network based on supervised and unsuper-
vised learning can achieve a high rate of 95.93 %
for a twelve-class fault classification problem at

[5] A. K. Ghosh and D. L. Lubkeman, IEEE
Transactions on Power Delivery 10, 109
(1995).

transmission lines. Moreover, in [20], a wavelet-

[6] R. K. Aggarwal, Q. Y. Xuan, R. W. Dunn,

neurofuzzy approach for power quality violations

A T. Johns, and A. Bennett, IEEE Trans-

detection performed 95% for training set and 92%
for test set. The proposed fault classifier ap-
proach demonstrated in Figure 9 is trained using
250 different fault patterns for the distribution

actions on Power Delivery 14, 1250 (1999).
[7] N.C. Fahmida, J. L. Arevena, W. M. Grady,

and A. J. Parsons, IEEE Transactions on

Control Systems Technology 6, 623 (1998).

system. During the testing, the pattern classifier
was presented with 100 new fault patterns. The
rated performance of the test data is between 85%
and 92%. The classification architecture used in
this paper correctly classified 92 % of the pat-
terns, and it could not classify 8% out of 100 new
fault patterns. All the test results presented show
that the proposed fault classification technique
based on SOM is well suited for fault classifica-
tion problems. This hybrid method is easy and
very promising for fault classification problem.
This research has showed that combined

[8] N.Kandil, V. K. Sood, K. Khorasani, and R.
V. Patel, IEEE Transactions on Power Sys-
tems 7, 812 (1992).

[9] K. L. Frick and S. K. Starret, Classification
of Disturbance Characteristics Using a Ko-
honen Neural Network, Large Engineering
Systems Conference on Power Engineering,
Halifax, Canada, 124 (2000).

[10] H. Song and S. Lee, IEEE Transactions on
Neural Networks 9, 369 (1998).

[11] R. K. Aggarwal, Q. Y. Xuan, A. T. Johns,
F. Li, and A. Bennett, IEEE Transactions on

Wavelet-ANN technique can be used for the clas-
sification of power system short-circuit faults.
More work is needed to further explore the other
aspects of cluster characteristics and to better
classify each of them. Future work can involve
the use of actual recorded field data to verify ini-
tial results obtained in this study.
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