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Stochastic analysis of reinforced concrete (R-C) 3D shear wall-frame structures under seismic excitations with
the emphasis on the analysis of stiffness and strength degradation due to plastic deformations is theoretically
performed. As constitutive moment-curvature relation, the model of extended Roufaiel-Meyer for flexural behavior
and for shear reversals Origin-Oriented hysteretic model have been examined by making some modifications for
wall elements and frame members. Stochastic earthquake excitations are specified as intensity modulated to the

Jennings-Housner-Tsai type envelope function and Gaussian white noise filtered simulated earthquake. Dynamic
equation of motion is formed as an equivalent first order Stratonovich stochastic differential equation. In order
to reduce the calculation time during extensive simulations, a system reduction scheme have been implemented.
Demonstrating the ability of the program to predict the actual seismic response, a 7 storey R-C wall-framed
full-scale test structure has been calculated and the results are successfully compared with the experimentally

recorded data.
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1. Introduction

While analyzing the seismic response of R-C
elements, material non-linearity should be han-
dled as well as unsymmetrical cross-sections with
different yield capacities at positive and nega-
tive bending, stiffness and strength degradation
during plastic deformations and finite extensions
of plastic zones at the end of the structural ele-
ments. Depending on different characteristics of
the R-C members consisting the structural sys-
tem during seismic loading, they are examined
separately. For the mentioned analysis including
the above considerations, the following essential
assumptions are made.

i. All deformations of beams and columns are
small compared to their lengths.

ii. Bernoulli’s hypothesis is accepted.

iii. Influence of shear deformations is ignored
for beams and columns.

iv. Increments of axial forces and torsional mo-
ments depend linearly on the increments of
the axial elongation and the angular dis-
placement, respectively.

v. Incremental constitutive moment-curvature
relation with respect to local bending axes
of an element is assumed to be decoupled.

vi. Inertial and linear viscous loadings are ap-
plied as external statically equivalent nodal
loads.

2. Analysis of the Members of a Structural
System

2.1. Beam and Column Elements

A beam/column element in the dynamically de-
formed state can be seen in Figure 1 utilizing the
statical equilibrium as the reference. Here, the
superscript (9 presents the stiff-body displaced
state, while () denotes the statical equilibrium
state before the excitation.

The displacement of the nodes and nodal load-
ings then can be written in the form,

{re}t=A{rs s ro 11 T2 76

rg T2 T4 Ti0 T1 7'7} (1)

{Re}T = {Vlz Mly Véz - M2y Vly - Mlz

Vay Ms. My, My, N1 Noj. (2)

Since the components of R, are linearly depen-
dent through the external equilibrium equations
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Figure 1. Nodal displacements and end forces of a
3D beam or column element.

of the element, generalized stresses Q. can be de-
scribed by using six of these components.

T ~ ~ "
{Qe} ={ My M; M? N},

boom={) o

Here, it is obvious that N=N;=N, and
MZ=Mj;=May,. The nodal point displacements
conjugated to Q. can be written as,

My,
M,

Mlz

o) = { I

0: 62 w},

}oe={a}

By using the compatibility relations, the following
equation can be written where a is the compati-
bility matrix [1].

{¢e} = [ac] - {re}. (5)

Using virtual work principle, the incremental
stiffness relation can be written as,

{Qc)} = k)] - {ae(®)}

where k. (t) is the incremental stiffness matrix of
the element.

(4)

(6)

2.2. Tie-Beam Elements

Although similar nodal displacements and
loadings are present in tie-beams, the compatibil-
ity relations are different than beams and columns
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Figure 2. Nodal displacements of tie-beams with
rigid supports at both nodes.

because of the rigid support at one or each end.
Figure 2 illustrates the dynamically deformed tie-
beam. Using the equilibrium equations, the fol-
lowing compatibility relation is obtained where
B, and k; . are the compatibility and stiffness
matrices for tie-beams [2].
[kp,e] = [BC]T [ker] - [Be] - (7)
2.3. Wall Elements

Wall elements are determined consisting of n
number of linear elastic segments having the same
length similar as the study of [3]. Differently, all
sub-elements have 12 DOF as seen in Figure 3.
The value of n varies from 4 at higher storeys to
10 for the lower storeys. It is assumed that the
moment distribution within the storey is linear
and the corresponding curvature is constant for
each wall segment. Since the bending or shear
stiffness value may differ for each segment dur-
ing non-linear effects, the stiffness matrices for
each wall segment including the effect of shear
deformations, should be obtained by [4]. Finally,
condensed stiffness matrix S, for the shear wall
having 6 DOF at each storey levels (i) and (i +1)
is formed.

3. Hysteretic Models
Shear

for Bending and

In this study, an extended version of Roufaiel-
Meyer hysteresis for defining the increments in
bending properties for all type of elements and
Origin-Oriented hysteretic model for shear rever-
sals are used. Figures 4 and 5 show these rela-
tions, respectively.
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Figure 4. Roufaiel-Meyer hysteretic model for bend-
ing.

In the dimensionless relationship in Figure 4,
m;(x) is the normalized value at the i.th branch
of bending moment M;(x,t) with respect to yield-
ing moment M;" (x) and c;(x) is the corresponding
normalized curvature.

In the model having six different loading and
unloading branches both for positive and negative
bending, the origin is settled at the normalized
static moment m(®)(x) which is assumed to be
less than the yield moment of the section with a
bending stiffness of eigp=El,./El.; where EL, is
the bending stiffness of the uncracked section and
El,, is the equivalent stiffness calculated by

Eley(x) = My (2)/ky (). (®)

The normalized bending stiffness value during the
loading at a time ¢ is calculated by

ei(z,t) = eio(z,t)[ag (z,t) + ag (z,t)] +
eif (z,t)af (x,t) + eiy (v, t)ay (z,t) +
eisr(z, t)az(z,t) + eif (z,t)ad (z,t) +
eiy (z,t)ay (z,t) + eif (v, t)af (z,t) +
eiy (z,t)ay (z,t) + eid (z,t)ad (z,t) +
ei; (z,t)a; (z,t), (9

Shear Force

; s=Dizplacement

~

Figure 5. Origin-Oriented hysteretic model

where o are indicator functions with a value of

1 on the relevant loading branch and the value
of 0 elsewhere. The points (¢}, m}) and (c,,
m, ) where pinching occurs are controlled by a,
pinching factors as in [5]. For the strength degra-
dation, the model introduced by [6] is used. Ac-
cording to this model, the strength reduction is
controlled by utilizing the accumulated hysteretic
energy, e(x,t), and commences when the ductil-
ity ratios ¢t or ¢~ exceed a critical normalized
spalling curvature of ¢} or ¢, respectively. Then
the strength reduction function, g(e), and the
bending moment values can be written as

1 e<ep
g(€) = exp (—m) e > e,

€1

my (x,t) = myo () - g e (z,1)]. (10)
where eg and e; are the parameters of the strength
reduction function.

Figure 5 shows the shear force-displacement re-
lation where V.., V, and V,, are the cracking,
yielding and ultimate shear forces within the ele-
ment, respectively and d.,, d, and ¢, are the cor-
responding displacement values. G is the shear
modulus at the beginning and G, is the ratio of
shear stress to strain at shear yielding. Presenting
p as the ratio of transverse reinforcement, n the
ratio of elasticity modulus of steel to concrete,
Agn as the effective area of wall, h the storey
heigth, v shear stress in the wall and v as the
shear strain, the following equations can be writ-
ten.
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Ger = pn.G, V =v.Ag,

ds = v.h, (11)

Therefore the value of shear stiffness, K, varying
on loading or unloading branches in the hysteretic
model can be calculated according to the incre-
mental G value as,

Ash
h

vy = p.fyk.

K=G =t =Gk, (12)

4. Modeling of Earthquake Motion

The acceleration process at the ground sur-
face is determined as the response process of
intensity modulated Gaussian White Noise, fil-
tered through a Kanai-Tajimi filter with pa-
rameters wo and (g. The displacement of the
earth surface rg relative to the bedrock surface is
then related to the bedrock acceleration process
{#p(t),t € [0, 00) }is modeled as

Fo + 2Coworo + wire = —F (13)
Here, bedrock acceleration can be obtained from
Fpdt = B(t) - dW (¢) relation, where W(t) is a unit
Wiener process and §(t) is a deterministic enve-
lope function defined as (Jennings et al., 1968).
The acceleration at the ground surface #(t) is
then be written as,

Fs(t) = (Fy + ) = (—2Coworo — waTo). (14)

5. Dynamic System Analysis

The equation of motion in global coordinates is
widely known as,

(] {5+ Uiy } +[C] {7} + [t + G+ S] - {r}

+ [apl]T {Qp} =0.

r representing the vector of all transitional and ro-
tational DOF, M and C mass and linear viscous
damping matrices. In the expression, the sub-
scripts (o) and () define the members in elastic
or plastic manner.

Using the compatibility and constitutive rela-
tions, the following equations are written,

(15)

{Qu} = k] - {da?,
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Figure 6. Variation of non-dimensional bending stiff-
ness thru element length.

{Qpl} = [kpl(Qplaqplaﬁpl)] : {‘jpl}a (16)
where p,; is the additional state variables from
plastic elements.

During the calculation of the stiffness matrices,
the normalized bending stiffness values ei¥?
determined by linear interpolation on five discrete
points through the element length, 1., for & =0,
& =€, £=0.5, {,=1-¢ and &=1. Figure 6, illus-
trates these coordinates on a beam element where
e controls the length of plastic hinge.

Therefore, the dynamic equation of motion can
be written in the following form.

ara
aLcT

{7 {QY = — {7} M) + {U} {i'o + 7} } =

[MI{#}+[a)" {Q} = [MHUH2Goworo +wiro).(17)

Then the dynamic equation of motion, filter equa-
tion and constitutive equations for R-C sections
can be combined and written as an equivalent first
order Stratonovich stochastic differential equa-
tion of the form,

X (1)} = {F{X}}dt+[G(t)] - AW ()}, (18.0)
{F{X ) = [A{XAX) + [K({Qpi ) [ap] {7}

{pu D] - lap] - {7}, (18.0)

(XY ={ ) 7} ro o {Quy low} ),
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(18.¢)

where X is the state vector, F(X) is the drift
vector, and G(t) is the diffusion matrix. The drift
vector F(X;t) does only depend on explicitly on
time if the filter coefficients are time-dependent.
The diffusion vector G(t) is independent of the
state vector X (t). Finally first order Stratonovich
differential equation is solved using the 4" order
Runge-Kutta procedure for the response statistics
of the system.

5.1. System Reduction

Since the time needed for calculations with the
developed software depends on the dimension of
the state vector X(t) which is dependent of the
dimension N of the global displacement vector r
and the plastic degree-of-freedom qp;, a system
reduction scheme based on the truncated expan-
sion of the eigenmodes of the undamaged struc-
ture is implemented as [7].

{rt)} = {2} -y () + {2} - 52(t) +

H{@}" - yn(t) = [2]-{y(t)} n < N.(19)

It should be noticed that, by applying n<N to
global displacement vector, elastic degrees of free-
dom are eliminated and the plastic degrees of free-
dom are maintained. Eigenmodes and the corre-
sponding eigenfrequencies are obtained from the
eigenvalue problem with Jacobi iteration.

[Ket + G + S] - {®} = w?, - [M] - {®},

i=1,2,.,n. (20)

Therefore, the modal coordinates for the first n

modes containing the non-linear behavior and for

the rest with elastic behavior can be written as
{ui}

"= wn Yn |
{yn) } 2D

and the corresponding orthonormalized modes
will be

{2} ={ {2} {u}}.

{y}" = ynr1- ynv | {y} = {

(22)
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Figure 7. Full-scale, 7 storey BRI test structure
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Figure 8. Modulated E-W component of 1952 Taft
earthquake

When the same procedure is applied to the cor-
responding constitutive relations and if the quasi-
static modal coordinates are ignored in the dy-
namic system equation, then equation of motion
will only consist of the modal coordinates with
non-linear behavior.

6. Numerical Example

In order to demonstrate the ability of the de-
veloped computer program SAR-CWF, a full-
scale structure which is a part of the US-Japan
Co-operative Research Program, constructed in
Tsukuba-BRI is studied for comparison [8]. Fig-
ure 7 shows the floor plan and reinforcement de-
tails of the building.

All columns and walls are symmetrically rein-
forced, and further it is reported that the unit
weight of concrete is 7.=25 kN/m?3, the mod-
ulus of elasticity is E.=2.5x107 kN/m?, con-
crete compression strength f.,=26.5 MPa, yield-
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Figure 9. Top storey displacement time history of
the 7 storey BRI test structure

Figure 10. Base shear time history of the 7 storey
BRI test structure

ing strength of steel is f,=343 MPa, the Pois-
son’s ratio v=0.20 and the damping ratio for the
structure is £€=0.005. Detailed characteristic val-
ues for the elements’ cross-sections such as mo-
ment of inertia for local axes, effective area, yield
capacity for both positive and negative bending,
cracking, yielding and ultimate shear capacities
and the corresponding deformations for walls are
used as in [9].

The pseudo-dynamically tested 7 storey shear
wall-frame structure was subjected to modulated
1952 Taft Earthquake of E-W component (SPD-
3) given in Figure 8.

For the analysis, shear walls at top five storeys
are divided into 5 sub-elements, while 10 sub-
divisions are realized for the first and second
storeys, since those correspond the critical height
according to the Turkish Earthquake Resistant
Design Code (1997). For the non-linear analysis,
a time step of At=0.005 sec, strain hardening ra-
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Top Storey Displacement ()

Figure 11. Top storey displacement - base shear vari-
ation
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Figure 12. Plastic hinges and curvature ductilities

tio of s(x)=0.10, distance controller for the plastic
hinge length €=0.10 and the parameters for the
strength deterioration model eg=26 and e;=12
are used. From the eigen solutions of the linear
system, the first two eigen periods are found out
to be Ty,1=0.46 s and T 2=0.12 s, respectively.

After SPD-3 strong motion with a peak accel-
eration of ~320 cm/s? is applied to the system,
the first two periods of the system increased to
T,=0.87 s and T>=0.18 s, respectively which are
very close to the values reported during the ex-
periments [10]. The top storey displacement vari-
ation and base shear time history are also inves-
tigated. The comparison of the calculated values
and the recorded data for these terms can be seen
in Figures 9 and 10, respectively.

For evaluating the displacement ductility of the
structure, top storey displacement versus base
shear relation is obtained similar to [11]. Ac-
cording to Figure 11, the ductility is calculated
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as 4.32, which is reported as 4.10 after the tests.
Furthermore, the occurrence of plastic hinges and
the values of curvature ductilities calculated by

der Seismic Excitation, Structural Reliability
Theory, 99, Un. Aalborg, Denmark. (1992).
B. Tagkin, Ph.D. Thesis, Istanbul Technical

the program are very close to the ones recorded

University, Istanbul, Turkey (2001).

during the tests [12]. Figure 12 shows a scheme

R. R. Lopez, Ph.D. Thesis, University of 1li-

for hinges and the curvature ductility values.

7. Conclusions

A computer program for the non-linear
stochastic analysis of 3D RC shear wall-frame
structures is developed including the properties of
unsymmetrical cross-sections with different yield
capacities, interaction of bending moments and
axial forces, stiffness and strength degradation
due to plastic deformations, pinching effect of
moment-curvature relation and finite extensions
of plastic hinges. Application of an extended
version of Roufaiel-Meyer hysteretic model for

nois, Urbana Champaign, U.S.A. (1988).

J. S. Przemienniecki, Theory of Matrix
Structural Analysis, (McGraw-Hill Book
Company, New York 1968).

M. S. L. Roufaiel and C. Meyer, Journal
of Structural Engineering, ASCE, 113, 429
(1987).

N. B. Kristensen and K. Ngrgaard,
M.Sc.Thesis, University of Aalborg, Den-

mark. {1992).

K. J. Mgrk and S. R. K. Nielsen, System
Reduction for Random Dynamically Loaded
Elasto-Plastic Structures, Proceedings of the

Scandinavian Forum on Stochastic Mechan-

bending and Origin-Oriented hysteretic model for
shear reversals is carried out. A system reduc-
tion scheme based on a truncated expansion of
the eigenmodes of the undamaged structure has
been realized. Finally, by gathering the dynamic
equation of motion, filter equation and constitu-
tive relations together, first order Stratonovich
stochastic differential equation for the system is
obtained.

The capabilities of the program have been
demonstrated by a numerical example which is a
full-scale test structure. Depending on the com-
parison of the deterministic analysis results and
the test records, it can be concluded that predic-
tion of the magnitudes of peak values and their
frequencies for both top storey displacement and
base shear time histories as well as the displace-
ment and curvature ductility values and the for-
mation of plastic hinges are found to be success-
ful.

It is aimed to run the software for many real-
izations of strong motion ensemble and obtain the
response statistics of structural elements. Besides
ensemble averages like expected values, standard
deviations or higher order statistics of the element
responses, suitable probability distribution func-
tions are also required and have to be researched
for probabilistic and reliable design of structures
subjected to earthquake loading.
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