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Knot Probability for Self-Avoiding Loops on a Cubic Lattice
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We investigate the probability for appearance of knots in self–avoiding loops (SALs) on a cubic
lattice. A set of N–step loops is generated by attempting to combine pairs of N/2–step self–avoiding
walks constructed by a dimerization method. We demonstrate that our method produces unbiased
samples of SALs, and study the knot formation probability as a function of loop size. Our results
corroborate the conclusions of Yao et. al. with loops generated by a Monte Carlo method[1].
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Knots and links naturally appear in long polymers
[2], and play a prominent role in biological systems and
processes[3]. Examples include chromosomes during cell
division [4], knots in bacterial DNA [5], or knots in the
native states of proteins[6]. It can be shown rigorously
that very long self–avoiding loops are always knotted[7].
However, the theoretical proofs do not provide the fre-
quency of the knots, or the functional dependence of
their frequency on loop size. Quantitative insight into
this question was first provided by a numerical study
of random walks on a lattice [8]. Excluded volume ef-
fects, or self–avoiding (SA) interactions, are certainly
crucial for correct description of polymers[9]; however,
their incorporation into numerical studies is not sim-
ple. Earlier studies considered continuum models of self–
avoiding loop (SAL) polymers with varying degrees of
self–repulsion [10, 11], and demonstrated that with in-
creasing number of monomers N , the fraction of un-
knotted loops decreases as e−N/No. The characteris-
tic size at which knots appear is surprisingly large: It
increases from several hundred steps in the absence of
self–avoidance, to hundreds of thousands for strongly SA
polymers. Since the value of N used in typical simu-
lations does not exceed several thousands, for SAL one
can assume that the probability of an unknotted config-
uration simply decays exponentially. The value of No

can then be extracted by noting that for N ≪ No the
probability of the knotted configurations is PN ≈ N/No.
A recent study by Yao et al.[1] investigated the knotting
probability of SALs on a cubic lattice with N ≤ 3000 and
found No ≈ 2.5× 105. Our results corroborate the above
study using a different approach to generating SALs.

Generating sufficiently large numbers of SALs has been
the main obstacle to the study of statistics of knots
in polymers. Static methods for creating SA polymers
one at a time have the advantage of producing config-
urations that are independent of each other. If we do
not require the two ends of a polymer to meet, several
methods generate samples of “properly weighted” con-
figurations: For lattice or for continuum models with
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FIG. 1: The probability that two N/2–step SAWs with the
same origin terminate at the same point (full circles), and
the probability of their forming a proper SAL (open circles).
(These results were obtained in our simulations by including
a 48–fold symmetry factor enhancement, as explained in the
text.) The ratio between the latter and the former, i.e. the
probability that the loop formed by the N/2-step pairs is self–
avoiding (diamonds) as a function of N .

“hard” potentials, this means that every configuration
has the same weight. In the dimerization algorithm[12],
an N -step SA walk (SAW) is created by generating two
(N/2)-step SAWs and attempting to concatenate them.
(If the concatenated walk is self–intersecting, it is dis-
carded and the pair creation process is restarted.) The
resulting SAWs are properly weighted, i.e. each has the
same weight. While this method is very efficient[13], it is
not well suited for generating SALs: To produce a prop-
erly weighted 2N–step SAL, we could first generate two
N–step SAWs, assume that they both start at the origin,
and check whether they do not intersect and end at the
same point creating a loop, discarding the pair if they do
not form a proper SAL. However, the probability of two
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FIG. 2: The solid line depicts the probability distribution for
the end to end distance of a single self-avoiding walk of length
256. The dashed line corresponds to the “correct ensemble”
in which two such walks accidentally meet at the same po-
sition. In Ref.[16], the former ensemble is used to generate
instances of the latter, weighting the resulting configurations
with the appropriate bias. The full circles are the distribu-
tion of the end-to-midpoint distance of actual, successfully
generated, 512–step SALs in our dimerization procedure.

SAWs in d dimensions accidentally terminating at the
same point is proportional to R−d ∼ N−dν, where R2 is
the mean squared end-to-end distance of N -step SAWs,
and in d = 3 the swelling exponent is ν = 0.588 [14]. Full
circles in the Fig. 1 depict this decay withN . In addition,
the probability that two such walks do not intersect each
other decays as N2(1−γ), where γ = 1.158 in d = 3[15],
as demonstrated by the diamonds in Fig. 1. Thus, suc-
cessful formation of a three-dimensional SAL using this
direct method is proportional to N−2.08, as depicted by
open circles in Fig. 1.

To circumvent the problem of the rarity of cases where
two SAWs starting from the origin terminate at the same
point, Chen suggested [16] accumulating lists of SAWs.
Whenever two SAWs in the list have the same end-to-
end distance, they are rotated to make their endpoints
coincide, thus producing a loop. Keeping the information
on large numbers of SAWs is computationally memory–
intensive. A more serious concern is that the ensemble of
generated loops is biased: The solid line in Fig. 2 depicts
the probability distribution of the end-to-end distance r
for 256-step SAWs; the dashed line corresponds to the
subset of cases where a pair of SAWs has the same end–
point. The latter is the correct ensemble for loops, while
the former is the ensemble produced when accumulated
SAWs are rotated and linked. This distinction in weight
(bias) is well-known, and is properly corrected in Chen’s
algorithm. However, as in all bias-corrected methods,
while the expectation value of a desired quantity is cor-
rectly reproduced, the variance of this quantity increases
with system size. Essentially, bias–corrected methods at-

FIG. 3: A trefoil knot in a 64–step SAL on a cubic lattice.

tempt to reconstruct one distribution from a tail of an-
other distribution; the distributions moving further apart
with size. Fortunately, as can be seen from Fig. 2, for
moderate values of N the distributions are not very dif-
ferent, and good results were obtained in Refs. [10, 11]
by this method. Alternatively, Yao et al.[1] used a Monte
Carlo pivoting method[17] to generate many SAL config-
urations starting from an initial loop on a cubic lattice.
While this method produces correctly weighted configu-
rations, they may be statistically dependent. Cognizant
of this difficulty, Yao et al. sampled the system at time
intervals significantly exceeding the decay time of geo-
metrical correlations, and verified that the times of ap-
pearance of knots behave like in a Poisson process.

In this work we employ a direct unbiased approach
to generating (2N)–step SALs. We first use successive
dimerizations to generate two N–step SAWs, and then
check whether (if starting from the same origin) they
form a SAL. As discussed before, the probability of suc-
cessful pairing of two SAWs decays as ∼ N−2.08; this
includes the rejection probability that two segments of a
formed loop intersect. We find that the latter probability
has only a weak dependence on the size of the loop. In-
deed, the distribution of the distance between the origin
and the 128th monomer in 256–step SALs, depicted by
full circles in Fig. 2, practically coincides with the proba-
bility distribution (dashed line) of generating loops from
two SAW segments, irrespective of their mutual intersec-
tions.

The small probability of two SAWs forming a loop can
be enhanced 48-fold, by taking advantage of symmetries
of the lattice to consider only SAWs whose end–point co-
ordinates ~r = (x, y, z) satisfy the relations x ≥ y ≥ z ≥ 0.
This is achieved by generating a regular N -step SAW,
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FIG. 4: Full circles depict the probability that an N-step SAL
forms a knot. Error bars indicate one standard deviation. For
comparison, open circles show the results of Ref. [1].

and then performing the following transformations: If
the coordinate x of the end–point is negative, the walk
is reflected with respect to y − z plane; and similarly
for the other end–point coordinates. If the end–point
has x < y then x and y coordinates are interchanged
along the whole walk; with corresponding interchanges
for other pairs of axes. As a result of these transforma-
tions, we reduce the space in which the end–point can be
located by a factor of 48, and thus increase the probabil-
ity of forming a loop. In continuum, such reduction of
space does not introduce any bias, since each SAW in the
allowed subspace corresponds to 48 SAWs in the original
space. This is, however, not true for SAWs ending on
the boundaries of the allowed subspace; e.g. there are
only 24 SAWs with x = y > z > 0, and consequently
loops created by SAWs ending at such points are under–
represented by a factor of 2. In continuum, configurations
with x = y have zero measure, but on discrete lattices a
finite fraction of loops have this property, thus, creating
a slightly biased sample. Since this is a boundary ef-
fect, it decreases with the inverse linear size of the space
considered, i.e. it will be proportional to 1/R.
The direct method is quite efficient for generating small

loops. The minimal (trefoil) on a cubic lattice consists

of 24 steps[18], and the probability of its occurrence is
extremely small. For N = 64, we had to examine 510
million pairs of 32–step SAWs in order to find 1.4 million
SALs, out of which 27 formed a trefoil knot of the type
depicted in Fig. 3. At this point the probability to have
a knot is 0.000022 ± 0.000004. We used the Alexander
polynomial[19, 20] (at the value of its argument equal
to -1) to determine the presence and type of a knot.
Since almost all observed knots were trefoils, and very
few more complicated knots were encountered, this in-
variant sufficed for our purposes. The limiting factor in
our simulations was computer time, and we could not go
beyond N = 1024, for which several months of CPU on
a multiple processor computer were necessary to reach
sufficient accuracy. At this value of N , the probability to
form SALs dropped to 10−5, even after the 48–fold en-
hancement of the sampling. While the correction to bias
in sampling symmetric configurations was important for
N = 64, it became negligible for N = 1024.

Figure 4 depicts our results for the probability pN of
having a knot in a SAL of length N . The curvature in the
results for this range of values of N prevents a reliable
extraction of No by a linear fit. Our two highest data
points compare well with the lowest data points of Yao
et al.[1] that are included for comparison. While our
results give a slightly larger probability than in Ref. [1],
the difference is only one standard deviation, and is not
significant at this level of accuracy. We also note that
out of the 59 knots detected for N = 512, only two were
not trefoils, consistent with the results of Ref. [1].

In conclusion, we used the most direct method for gen-
erating an unbiased ensemble of SALs on a cubic lattice
(up to symmetry factors). The method does not require
large memory, but is very time consuming. While quite
efficient for small and moderate sized SALs, it is limited
to loops of around 1000 steps, at which the probability
of forming a knot is around half a percent. Our results
are consistent with those of Ref. [1], and provide an in-
dependent support of the conclusions from Monte Carlo
sampling.
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