
ARI The Bulletin of the Istanbul Technical University VOLUME 54, NUMBER 3
Communicated by Zekai Celep

Transfer and Stiffnes Matrix for Timoshenko Beams

on Elastic Foundations
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In this study Timoshenko beams on elastic foundations are analyzed under arbitrary loading by transfer matrix
method. The Winkler hypothesis adopted, because of its simplicity. The analytical approaches provide physical
insight into the nature of the problem. It is observed that three distinct behavior of a structure of the beam
exist depending on parameters. Therefore three types of transfer matrixes are derived by the spectral expansion
method, in terms of the displacement, the rotation, the moment and the shear forces. Furthermore, three distinct
stiffness matrixes are obtained. However, for engineering purposes only one of them has practical importance.
The transfer matrix serves to derive the stiffness matrix, which is necessary to analyze the structural frames.
For this purpose equivalent nodal forces are given for the concentrated and trapezoidal load distribution. The
performance of the method is shown by the numerical examples.
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1. Introduction

It is well known from the classical beam theory
that, shear effect is important for the beams with
small span-to- height ratio or beams which have
profile cross sections or in other words for the
beams which have a high cross section parame-
ter. In addition, shear effect may be important for
beams which are subjected to concentrated loads.
A beam theory that considers for both the bend-
ing and shearing was proposed by Timoshenko for
modeling behaviors of the beams [1]. It is com-
monly accepted that Timoshenko beam theory is
more accurate than the Bernoulli-Euler theory,
particularly when the beam has the properties
which are stated previously. In the other hand,
the response of foundations, the Winkler hypoth-
esis is extensively used by researchers because of
its simplicity. A summary of foundation models
introduced by numerous investigators is given in
the reference [2]. Beams on elastic foundations
have been investigated by numerous researchers.
Hetenyi [3] studied straight beams on Winkler
foundations and obtained an exact solution. Var-
ious authors [4, 5] have investigated closed form
solutions of the problem, beams on elastic foun-
dation. Keskinel have derived the stiffness matrix
for the beams on elastic foundation [6]. The finite
element approaches employed extensively in the
analysis of the structures. The general infor-
mation can be found in literature [7, 8].

Aköz et al [9] introduce a mixed finite element
formulation for three-dimensional beams which
accounts for the effect of shear deformation and
was shown that the exact result can be obtained
with a single element for the cantilever beam
using this formulation. Friedman and Kosmate
[10] developed an accurate two node finite ele-
ment for curved shear deformable beams. A least
squares finite element method for Timoshenko
beam problem has been proposed and studied
by Jou and Young [11]. Aköz and Kadıoğlu [12]
have studied circular Timoshenko beam resting
on elastic foundation by finite element method.
Aydoğan obtained numerical stiffness matrix of
beam element with shear effect, using the shape
functions which are solutions of the fourth order
differential equations [13].

Another approach in solving the differential
equations is matrix method that originally intro-
duced by Inan [14] and it named as carry over-
matrix. In subsequent years, other papers have
appeared in literature [15-18]. Yin derived ordi-
nary differential equations for reinforced Timo-
shenko beams on elastic foundation. An analyt-
ical solution is obtained for a point load on the
infinite beam on elastic foundation [19]. Yin later,
obtained the closed-form solution of finite beam
under any vertical pressure, using Fourier series
[20]. The integral equation method is used by
Antes. He chose displacement and rotation as free
parameters [21]. Alghamdi derived the dynamic
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Figure 1. The Timoshenko beam on elastic founda-
tion

transport matrix for the Timoshenko beam, in
terms of two independent parameters i.e. dis-
placement and rotation of the beam [22].

In this study, we shall deal with the solution
of the system of equations employing the trans-
fer matrix method. Timoshenko beam on elastic
foundation displays three distinct behaviors de-
pending on the material properties. Three differ-
ent transfer matrix are obtained by spectral ex-
pansion method in terms of four parameters i.e.
the displacement v, the rotation of the beam, θ,
the bending moment M and the shear force T. In
the second step, stiffness matrixes are derived to
implement computer programs for frame analysis.

2. The Field Equations

The beam on elastic foundation and the axes
are depicted in Fig. 1. Longitudinal axis is de-
noted as z in this figure. Where EI is the bending
rigidity, A is the beam cross section area, L is the
beam length, k is the sub grade reaction modulus,
q is the lateral distributed load, b is wide and h
is the height of beam respectively. The sign con-
vention for shearing force and bending moment
depicted in Fig. 2. v shows the linear displace-
ment in y direction.

Kinematics relation can be written as follows:

dv

dz
= −Ω +

sT

GA
(1)

where Ω is the rotation of the cross section of the

Figure 2. an infinitesimal element and positive di-
rection of internal forces

beam, s is the shape factor and defined as follows:

s =
1

A

∫

A

∫ (
τ

τ0

)2

dA (2)

Employing Bernoulli-Navier Hypothesis, the
Hooke Love and two equilibrium equations, we
end up with the following three equations.

dΩ

dz
=

M

EI
dM

dz
= T

dT

dz
= −q + kv (3)

Combination of Eqs. (1) and (3) can be expressed
by a single matrix equation as follow:

S′(z) = D · S(z) , (4)

where S is called a state vector and contains the
four parameters v, Ω, M, T. The positive direc-
tion of the elements state vector are depicted in
Fig. 3.

And D is called the differential transmitter ma-
trix (DTM) and defined as follow:

D =




0 −1 0 s
GA

0 0 1
EI 0

0 0 0 1
k 0 0 0


 (5)

For more information the reader may refer to M.
İnan [14, 17].
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Figure 3. the positive direction of the element of the
state vector

3. The Solution and Transfer Matrix

The solution of the Eq. (3) can be easily writ-
ten as

S = exDS0 , (6)

where S0 is the initial value of the state vector at
z=0. Then the transfer function can be defined
as

F = exD (7)

Eq. (6) can be written shortly as follows

S(x) = F(x)S(0) (8)

The transfer matrix F(x) will be written in terms
of nilpotent and idempotent matrix. This is
achieved by using spectral expansion theorem as
follows [23]:

D =
n∑

i=1

λiPi + Qi , (9)

where, λi are eigenvalues of the matrix D, P and
Q are idempotent and nilpotent of D respectively.
For the sake of simplicity the details of mathemat-
ical operation is not given here. The derivation
and the properties of these matrixes are omitted.
Necessary information can be found in literature
[23]. If the idempotent and nilpotent of any ma-
trix are known then the function of this matrix is
written as

Φ(D) =

n∑

i=1

{
Φ(λi)Pi +

sk−1∑

1

Φr(λi)

r!
Qr
i

}
, (10)

where sk is multiplicity of, λi, r = sk − 1 and
Φr is rth degree of derivative with respect to λi.
After this definition, the transfer function F =
ezD can be derived using Eq. (9). Obviously to
accomplish the defined mathematical operation,
the first step is to calculate eigenvalues of matrix
D. Which are the roots of characteristic equation
of D:

λ4 − sk

GA
λ2 +

k

EI
= 0 . (11)

The roots or eigenvalues are

λ2
1,2 =

sk

2GA

(
1±
√

1− α
)
, (12)

where α is

α =
4G2A2

s2kEI
. (13)

Dimensionless α defines three intervals:

α > 1

α = 1

α < 1 . (14)

Referring to Eq. (13), it can be concluded that
α must be grater than 1 for common engineering
materials and the reasonable dimension of struc-
tures. Therefore, the first interval is important
for engineering purposes. Then the basic proce-
dure of mathematical operations will be explained
and stiffness matrix will be developed only for
this case. For the sake of completeness, only the
transfer matrix will be given for the second and
third intervals.

3.1. Transfer Matrix for α > 1
For this case eigenvalues are

λ2
1,2 =

(
sk

2GA

√
1 + β2

)
e±iθ , (15)

where β =
√
α− 1 and β = tan θ.

There are four idempotents. They are given
in Appendix. Using Eq. (9) and idempotent the
following transfer matrix is obtained.

F (z) = ezD = ezλ1P1 + ezλ2P2

+ezλ3P3 + ezλ4P4 . (16)

This is a fourth order matrix. The elements of
the matrix are as follows:

F12 = L ·Ψ2 (Ψ3 ·Ψ4 + Ψ5 ·Ψ6)
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F13 = − 1

E · L2

(
Ψ7 · sinφ sinhϕ

sin 2ω

)

F14 =
1

2 ·E · L {Ψ8 · [(1− 2 cos 2ω) ·Ψ3

+ (1 + 2 cos 2ω) ·Ψ5]

+Ψ9 · [Ψ3 −Ψ5]}

F21 =
1

L

(
Ψ3 −Ψ5

4 ·Ψ2

)

F22 = cosφ · coshϕ− sinφ · cos 2ω · sinhϕ

sin 2ω

F23 = − Ψ10

E · L3
{Ψ3 · (−1 + 2 cos 2ω)

+ cosφ · sinhϕ (secω − 4 cosω)}

F24 =
1

E · L2

(
Ψ7 · sinφ sinhϕ

sin 2ω

)

F31 = E · L2

(
sinφ sinhϕ

Ψ7 · sin 2ω

)

F32 = E · L3

(
Ψ5 −Ψ3

4 ·Ψ10

)

F33 = F22

F34 = −F12

F41 = k · F34

F42 = −F31

F43 = −F21

F44 = F11 (17)

where

µ = 2s(1 + v)

D∗ = EA

R∗ =
1

r2
=
A

I
θ = 2ω

φ = z

(
kR∗

D∗

)1/4

sinω

ϕ = z

(
kR∗

D∗

)1/4

cosω

a =

(
k

E

)1/4

Ψ1 = µ
(
a2
)
√

I

A2

Ψ2 =
1

2a

(
I

L4

)1/4

Ψ3 = sinφ cscω coshϕ

Ψ4 = −Ψ1 − 1 + 2 cos 2ω

Ψ5 = cosφ secω sinhϕ

Ψ6 = Ψ1 − 1− 2 cos 2ω

Ψ7 =
1

a2

√
L4

I

Ψ8 =
µ

a

(
I · L4

A4

)1/4

Ψ9 = a · µ2

(
I3 · L4

A8

)1/4

− 1

a3

(
L4

I

)1/4

Ψ10 =
1

2a

(
L12

I3

)1/4

(18)

3.2. Transfer Matrix for α < 1
The detail of mathematical manipulation is

omitted for this case and only the fourth order
transfer matrix is given as:

F11 =
1

2
{coshφ∗ + coshϕ∗

+
(− coshφ∗ + coshϕ∗)√

1− α

}

F12 = L · Y1 (Y2 · sinhφ∗ − Y3 · sinhϕ∗)

F13 =
A

I · k

(
coshφ∗ − coshϕ∗

µ
√

1− α

)

F14 =
Y4

E · L (Y5 · sinhφ∗ + Y6 · sinhϕ∗)

F21 =
Y7

L

(
− sinhφ∗√

1−
√

1− α

+
sinhϕ∗√

1 +
√

1− α

)

F22 =
1

2
{coshφ∗ + coshϕ∗

+
(coshφ∗ − coshϕ∗)√

1− α

}

F23 =
Y8

E · L3
(Y9 · sinhφ∗ − Y10 · sinhϕ∗)

F24 = − A

I · k

(
coshφ∗ − coshϕ∗

µ
√

1− α

)

F31 = EA

(− coshφ∗ + coshϕ∗

µ
√

1− α

)

F33 = F22

F34 = −F12

F41 = k · F34

F42 = −F31

F43 = −F21

F44 = F11 (19)
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where

φ∗ = z



√
µk −

√
km

2D∗




ϕ∗ = z



√
µk +

√
km

2D∗




Y1 =

√
A

L2

Y2 =

√
1−
√

1− α√
2a4µ (1− α)

Y3 =

√
1 +
√

1− α√
2a4µ (1− α)

Y4 =
1

2

√
L2µ

2A (1− α) a4

Y5 =

{
2
(
−1 +

√
1− α

)
+ α

}
√

1−
√

1− α

Y6 =

{
2
(
1 +
√

1− α
)
− α

}
√

1 +
√

1− α

Y7 =

√
2A3L2

I2a4µ3 (1− α)

Y8 =

√
AL6

2I2a4µ (1− α)

Y9 =

(
1 +
√

1− α
)3/2

√
α

Y10 =

(
1−
√

1− α
)3/2

√
α

Y11 =

√
2A3

L6a4µ3 (1− α)
(20)

3.3. The Transfer Matrix for α = 1
The elements of fourth order transfer matrix

reduces to the following simple form

F11 = cosh zλ+
zλ

2
sinh zλ

F12 = −zλ cosh zλ+ sinh zλ

2λ

F13 = −zλ
3

2k
sinh zλ

F14 =
λ

2k
(zλ cosh zλ+ 3 sinh zλ)

F21 =
λ

2
(zλ cosh zλ− sinh zλ)

F22 = cosh zλ− zλ

2
sinh zλ

F23 = −λ
3

2k
(zλ cosh zλ− 3 sinh zλ)

F24 =
zλ3

2k
sinh zλ

F31 =
kz

2λ
sinh zλ

F32 = − k

2λ3
(−zλ cosh zλ+ sinh zλ)

F33 = F22

F34 = −F12

F41 = kF34

F42 = −F31

F43 = −F21

F44 = F11 (21)

where

λ1 = λ =

√
µk

2D∗

D∗ = EA (22)

4. The Properties of Transfer Matrix

A state vector of the beam at arbitrary point
z has four elements which are the displacement
v(z), the rotation Ω(z), the bending moment M(z)
and the shear force T(z). As we move from one
point to another along the axis of the beam, the
elements of state vector varies in magnitude. The
convenient way to express the change in S(z) is
employment of the transfer matrix as follow:

S(z) = F(z) · S(0) , (23)

where S(0) is called the initial state vector at z=0.
This equation is very helpful in the study of Tim-
oshenko beams on a elastic foundation. Using this
equation the state vectors of two chosen specific
points of the beam can be related to each other
as follows:

S(B) = F(L)S(A) , (24)

where L is the distance between A and B. The
points A and B are the support points of the
beam. For any kind of support, two elements
of state vector belonging to the supports of the
beam, must be prescribed. Therefore, Eq. (24)
is fourth order simultaneous equation for the un-
known elements of state vectors. There are two
unknowns on both sides. Therefore we can find

5
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Figure 4. The singularity at point A

the results by solving second order equations.
This property provides significant simplicity to
the solution of the complex problem. The validity
of the following properties can be shown by math-
ematical calculation which will be helpful [14]:

Property I
The transfer matrix F(z) reduces to identity

matrix I at z=0. That is

F(0) = I (25)

Property II
The inverse of the transfer matrix can be ob-

tained easily as follows:

F−1(a) = F(−a) (26)

Property III

F(b) · F(a) = F(a+ b) (27)

The property III, comes from the exponential
character of the transfer matrix Eq. (7). Using
this property we can reach to the point B directly
or via the point A as follows (Fig. 4):

S(B) = F(a+ b) · S(0)

S(B) = F(b) · F(a)S(0) (28)

The mechanical significance of this property is
very important. If an external load exists at point
A, it can be included to the state vector by using
this property.

5. The External Loads and Particular So-
lution

If an external load, exists in the domain as de-
picted in Fig. 5. For z < ξ the state vector can

Figure 5. The different type of load

be obtained as follows

S(z) = F(z) · S(0) (29)

For z > ξ, by taking the point ξ+ as the origin
and S(ξ−) at point ξ− can be transferred to ξ+

by writing the equilibrium equation on the beam
segment. The value of the state vector at point
ξ+ will be

S(ξ+) = F(ξ) · S(0) + K(ξ) , (30)

where K(ξ) is load vector and is defined as fol-
lows:

K(ξ) =




0
0

−M(ξ)
−P (ξ)


 (31)

The state vector at an arbitrary point z > ξ can
be obtained as

S(z) = F(z − ξ) · S(ξ+) (32)

And using the Eq. (30) and third property one
obtains

S(z) = F(z)S(0)+F(z− ξ)K(ξ), F or z| > ξ(33)

If there is an external load at several points then

S(z) = F(z) · S(0) +
∑

F(z − ξi)K(ξi) (34)

If the external loads are distributed along the axes
of the beam, then the summation is replaced by
the following integral.

S(z) = F(z) · S(0) +

∫ z

0

F(z − ξ)K(ξ)dξ (35)

6
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Figure 6. The positive direction of nodal forces and
nodal displacements

Figure 7. u1 = 1, u2 = u3 = u4 = 0 and the positive
direction of k1i

6. The derivation of stiffness matrix

The loads are acting the plane on the ends of
the beam element, lying between two nods shown
in Fig. 6. The aim is to express the nodal forces
in terms of the nodal displacements. When nodal
forces expressed in terms of nodal displacements,
we have set of stiffness equations. The matrix
form of stiffness equations as follows:

p = K.u , (36)

where p, u are the nodal force and nodal dis-
placement vectors respectively. K is the 4-rowed
square matrix. The element of the stiffness ma-
trix Kij is the force at the point j, for the unit
displacement at the point i. The total 16 stiff-
ness coefficients correspond to the following the
four deformation configurations of the beam.

Type I u1 = 1, u2 = u3 = u4 = 0
Type II u2 = 1, u1 = u3 = u4 = 0
Type III u3 = 1, u1 = u2 = u4 = 0
Type IV u4 = 1, u1 = u2 = u3 = 0

Figure 8. u2 = 1, u1 = u3 = u4 = 0 and the positive
direction of k2i

Figure 9. u3 = 1, u1 = u2 = u4 = 0 and the positive
direction of k3i

These four deformation configurations and the
corresponding stiffness coefficients depicted in the
Fig. 7 through the Fig. 10.

The unknown stiffness coefficients will be de-
termined by using transfer matrix. The neces-
sary transfer matrix equations for these cases are
written in the Eq. (37),. through the Eq. (40).

Figure 10. u4 = 1, u1 = u2 = u3 = 0 and the
positive direction of k3i
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

F11 F12 F13 F14

F21 F22 F23 F24

F31 F32 F33 F34

F41 F42 F43 F44






−1
0
−k12

k11


 =




0
0
k14

−k13


 (37)



F11 F12 F13 F14

F21 F22 F23 F24

F31 F32 F33 F34

F41 F42 F43 F44







0
1
−k22

k21


 =




0
0
k24

−k23


 (38)



F11 F12 F13 F14

F21 F22 F23 F24

F31 F32 F33 F34

F41 F42 F43 F44







0
0
−k32

k31


 =



−1
0
k34

−k33


 (39)



F11 F12 F13 F14

F21 F22 F23 F24

F31 F32 F33 F34

F41 F42 F43 F44







0
0
−k42

k41


 =




0
1
k44

−k43


 (40)

The unknown stiffness coefficients will be de-
termined by solving these four matrix equations.
The complete solution is given in the Eq. (41)

K =




K11 K12 −F23

ζ −F13

ζ

K21 K22 −F24

ζ −F14

ζ

−F23

ζ −F24

ζ K33 K34

−F13

ζ −F14

ζ K43 K44


 (41)

where
K11 = F11F23−F13F21

ζ ,

K12 = F11F24−F14F21

ζ ,

K21 = F11F24−F14F21

ζ ,

K22 = F14F22−F12F24

ζ ,

K33 = F11F23−F13F21

ζ ,

K34 = F14F21−F11F24

ζ ,

K43 = F14F21−F11F24

ζ ,

K44 = F14F22−F12F24

ζ ,
and here ζis

ζ = F14F23 − F13F24 (42)

The stiffness equation given in Eq. (41) is valid
for three cases. But this equation will have the
following simple form for α = 1

k11 =
k

λ

(
4zλ− 6 sinh 2zλ

η

)

Figure 11. Single load and positive direction of in-
ternal forces

k12 =
k

λ2

(
η + 4z2λ2

3η

)

k13 = −4k

λ

(
zλ cosh zλ− 3 sinh zλ

η

)

k14 = −4kz

λ

(
sinh zλ

η

)

k21 = k12

k22 = −2k

λ3

(
2zλ+ 3 sinh 2zλ

η

)

k23 = −k14

k23 =
4k

λ3

(
zλ cosh zλ+ 3 sinh zλ

η

)

k31 = k13

k32 = k23

k33 = k11

k34 = −k12

k41 = k14

k42 = k24

k43 = k34

k44 = k22 (43)

where

η = 9 + 2z2λ2 − 9 cosh 2zλ (44)

7. Fixed-end Loads

Since beams are frequently subject to forces
acting between nods, it is necessary to derive
fixed-end forces. For the common engineering ap-
plications, corresponding only two types of loads
Fig. 11 and Fig. 12, the fixed-end forces will be
obtained using transfer matrix.

Using Eq. (35) for z = L and ζ = a we end up

8
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Figure 12. Distributed load and positive direction of
internal forces

with


0
0
M2

T2


 = F (L) ·




0
0
M1

T1


+ F (b) ·




0
0
0
−P


 (45)

If we solve these equations for M1, M2, T1, T2 we
will obtain

M1 =
P {F14(L)F24(b)− F24(L)F14(b)}

[F13(L)]
2

+ F14(L)F23(L)

T1 =
P {F23(L)F14(b) + F13(L)F13(b)}

[F13(L)]2 + F14(L)F23(L)

M2 = F33(L)M1 + F34(L)T1 − F34(b)P

T2 = F43(L)M1 + F44(L)T1 − F44(b)P (46)

Using Eq. (35) we have,

S(z) = F(z) · S(0)

−
∫ L

0

F(z − ξ)




0
0
0

(q1 +mξ)


 dξ , (47)

where

m =
q2 − q1

L
(48)

If we insert boundary conditions into Eq. (47)



0
0
M2

T2


 = F(L) ·




0
0
M1

T1




−
∫ L

0



F14(L− ξ)
F24(L− ξ)
F34(L− ξ)
F44(L− ξ)


 (q1 +mξ) dξ (49)

Solving these equations for M1, M2, T1, T2 we
have,

M1 =

{
A
}
F13(L) + {A5}F14(L)

[F13(L)]
2

+ F14(L)F23(L)

T1 =

{
A
}
F23(L)− {A5}F13(L)

[F13(L)]2 + F14(L)F23(L)

M2 = F33(L)M1 + F34(L)T1 +A6

T2 = F43(L)M1 + F44(L)T1 −A7 , (50)

where A = A1 +A2 +A3 +A4 and

A1 =
1

2EL
{Ψ8 (1− 2 cos 2ω) cscω}B1

A2 =
1

2EL
{Ψ8 (1 + 2 cos 2ω) secω}B2

A3 =
1

2EL
{Ψ9 (cscω)}B1

A4 = − 1

2EL
{Ψ9 (secω)}B2

A5 =
1

2EL2

(
Ψ7

sin 2ω

)
B3

A6 = −L ·Ψ2 (Ψ4 · cscω ·B1

+ Ψ6 · secω ·B2)

A7 =

(
Ψ1 − cos 2ω

sin 2ω

)
B3 +B4 , (51)

where all Ψi defined in Eq. (18).

g1 =

(
kR∗

D∗

)1/4

sinω

g2 =

(
kR∗

D∗

)1/4

cosω

B1 =
1

(g2
1 + g2

2)2
×

× {m (−2 cos [Lg1] sinh [Lg2]g1g2

+ cosh [Lg2] sin [Lg1](−g2
1 + g2

2)

+ Lg1(g2
1 + g2

2)
)

+ q1(g2
1 + g2

2)×
× ((1− cos [Lg1] cosh [Lg2])g1

+ sin [Lg1] sinh [Lg2]g2)}

B2 =
1

(g2
1 + g2

2)2
×

× {m (2 cosh [Lg2] sin [Lg1]g1g2

− cos [Lg1] sinh [Lg2](g2
1 − g2

2)

− Lg2(g2
1 + g2

2)
)

+ q1(g2
1 + g2

2)×
× (sin [Lg1] sinh [Lg2]g1

+ (−1 + cos [Lg1] cosh [Lg2])g2)}

B3 =
1

(g2
1 + g2

2)2
×

× {m (2g1g2 − 2 cos [Lg1] cosh [Lg2]g1g2

− sin [Lg1] sinh [Lg2](g2
1 − g2

2)
)

+ q1(g2
1 + g2

2) (− cos [Lg1] sinh [Lg2])g1

+ cosh [Lg2] sin [Lg1]g2)}

9
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Figure 13. The beam and its cross-section

B4 =
1

(g2
1 + g2

2)2
×

× {m (2 sin [Lg1] sinh [Lg2]g1g2

+ (g2
1 − g2

2)(1− cos [Lg1] cosh [Lg2])
)

+ q1(g2
1 + g2

2) (cosh [Lg2] sin [Lg1])g1

+ cos [Lg1] sinh [Lg2]g2)} (52)

8. Applications

To evaluate the performance of the theory, the
following three structures will be analyzed and
the results will be compared with the existing so-
lutions in the literature for Timoshenko beam and
Bernoulli-Navier beam.

8.1. The Beam Subjected a Single Load
The behavior of free-ended beam of T-cross sec-

tion and length l, carrying a single load at the
middle will now considered Fig. 13.

Physical and geometric properties of the beam
as follows:
E = 25 GPa (Elastic modulus)
k = 300 MPa (Subgrade modulus)
L = 5 m (Span length)
P = 1000 kN (Single force)
s = 2 (Shape factor of T-beam)
v = 0.2 (Poisson’s ratio of the beam)
A = 1.56 m2 (Area of the beam)
I = 0.36 m4 (Moment of inertia)

This problem is solved with and without shear

Figure 14. The vertical deflection of the beam

effect using transfer matrix. The transfer matrix
without shear effect is obtained by Çengel [24].
The transfer matrix for the beam with shear effect
the Eq. (17) is used. Because of single force acted
at the middle of the beam, the following singular
matrix is employed.

K(ξ) =




0
0
0
−P


 (53)

The state vector S obtained as follow [16]

S(z) = F(z) · S(0) + F(z − ξ) ·K(ξ) (54)

The deflection curves with and without shear
effect are obtained and they are depicted in
Fig. 14.

The shear does not effect the internal moment
and shear force distribution. Therefore, only the
moment and the shear force distributions given
in Fig. 15 and Fig. 16 respectively.

8.2. The Beams Supporting Two Single
Loads at the Ends

In this application, the behavior of a free-ended
beam of T-cross section and length l, carrying two
single loads at the ends, will considered for the
following three different cases Fig. 17.

1. The first case: h = 1.2 m, k = 300 MPa and
A = 1.24 m2, I = 0.154 m4

2. The second case: h = 1.6 m, k = 300 MPa
and A = 1.56 m2, I = 0.360 m4

10



Transfer and Stiffnes Matrix for Timoshenko Beams on Elastic Foundations

Figure 15. The moment distribution

Figure 16. The shear force distribution

Figure 17. The beam and its cross-section

Figure 18. The deflection curves for three different
cases with and without shear

3. The third case: h = 1.6 m, k = 600 MPa
and A = 1.56 m2, I = 0.360 m4

In the all three cases the modulus of elasticity is
E=25 GPa, Poisson’s ratio is v=0.2, shape factor
is s=2.

For this problem α is grater than 1, therefore
the transfer matrix will be used given by Eq. (17).
For the case, without shear effect the transfer ma-
trix is employed which is given by Çengel [24].
The same problems are solved by Aydoğan [13]
using FEM analysis. Aydoğan gives the values
at nodal points. In this work the values of de-
flection and internal forces are obtained as con-
tinuous functions. Deflections curves are given in
Fig. 18. Dotted curves show the deflection with-
out shear effect.

11
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Figure 19. Moment curves for two types of beams

Figure 20. The shear force curves for two type beams

Figure 21. The structure geometry and its loading

Internal forces; moment and shear force dia-
grams are shown in Fig. 19 and Fig. 20, respec-
tively.

8.3. The Solution of Two-Story Building
The last structure considered is two-story

frame whose dimensions and loading shown in
Fig. 21. The shape factor, s is taken as 2. The
material properties of the frame are E=25 GPa.
v=0.2. This building supported to continuous
beam on elastic foundation with sub grade mod-
ulus 450 MPa.

The structure geometry, loads, nodal and el-
ement numbers are depicted in Fig. 21. The
beam’s cross-sections are given in Fig. 22. This
problem is solved for both; with shear effects and
without shear effects. In the solution with shear
effect, the stiffness matrix is used given in Eq.
(41). For the solution without shear effect, the
stiffness matrix is obtained by Çengel [24].

The deflection curves of foundation are shown
in Fig. 23. The difference in between the deflec-
tion curves with shear effect and without shear
effect is very clear. Especially discontinuity of
first derivative of displacement curve under sin-
gular force is very interesting result, which can
be directly concluded from Eq. (1). The internal
forces diagrams are depicted Fig. 24 and Fig. 25
for only with shear effect. Because of the effect
of shear on the distribution of internal forces is
negligible.

12
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Figure 22. The beam’s cross-sections

Figure 23. The deflection curves of the foundation Figure 24. The moment diagram of the foundation

13
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Figure 25. The shear force diagram of the foundation

9. Conclusion

In this study, the effect of shear is investigated
for the beams on elastic foundation. For the so-
lution three different transfer matrix are derived
depending on parameter, α.

1. Three different stiffness matrixes are de-
rived depending on parameter α.

2. Fixed-end loads are derived for two load
conditions, which may be helpful for engi-
neering applications.

3. The effect of shear on deflection is meaning-
ful.

4. The effect of shear increases with increasing
height of the beam.

5. The effect of shear on the distribution of
internal forces is negligible for engineering
purpose.

6. The deflection decreases with the increasing
sub grade modulus and height of beam as
expected. In this variation, sub grade mod-
ulus is more effective than the height of the
beam.
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[17] M. İnan, Technical University of Istanbul (1964).
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A. The Idempotents for the Case α > 1

The following properties of idempotents are
helpful for the mathematical manipulations:

1.
N∑
i=1

Pi = I

2. PiPi = Pi

14
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3. PiPj = 0 for i 6= j

We need the four matrix equations to solve the
four idempotent. The four matrix equations as
follows [22]:

P1 + P2 + P3 + P4 = I

λ1P1 + λ2P2 + λ3P3 + λ4P4 = D

λ2
1P1 + λ2

2P2 + λ2
3P3 + λ2

4P4 = D2

λ3
1P1 + λ3

2P2 + λ3
3P3 + λ3

4P4 = D3 , (55)

where D is differential transmitter matrix, Pi are
idempotent matrix and I is unit matrix.

The mathematical manipulations are omitted
for sake of simplicity. The reader may refer the
reference [23]

P1 The elements of first idempotent:

P11 = B

(
e−2iω − µ

√
k

D∗R∗

)

P12 =
Be−iω

(
µ
√
k − e−2iω

√
D∗R∗

)

(kD∗)1/4 (R∗)3/4

P13 = B

√
R∗

kD∗

P14 = Be−iω ×

×

{
D∗R∗ + µ

√
k
(

e−2iω
√
D∗R∗ − µ

√
k
)}

(D∗)5/4 (kR∗)3/4

P21 = −Be−iω
(
kR∗

D∗

)1/4

P22 = Be−2iω

P23 =
Be−3iω

k1/4

(
R∗

D∗

)3/4

P24 = −B
√

R∗

kD∗

P31 = −B
√
kD∗

R∗

P32 = Be−iω(k1/4)

(
D∗

R∗

)3/4

P33 = Be−2iω

P34 =
Be−iω

(
e−2iω

√
D∗R∗ − µ

√
k
)

(kD∗)1/4 (R∗)3/4

P41 = Be−iω(k3/4)×

×

(
e−2iω

√
D∗R∗ − µ

√
k
)

(D∗)1/4
(R∗)3/4

P42 = B

√
kD∗

R∗

P43 = Be−iω
(
kR∗

D∗

)1/4

, (56)

where γ is Poisson ratio, r is the radius of moment
of inertia

B =
i

4 · sin 2ω
µ = 2s(1 + v)

D∗ = EA

R∗ =
1

r2
=
A

I

P44 = B

(
e−2iω − µ

√
k

D∗R∗

)

(57)

P2 The elements of second idempotent:

P11 = B

(
e−2iω − µ

√
k

D∗R∗

)

P12 = −
Be−iω

(
µ
√
k − e−2iω

√
D∗R∗

)

(kD∗)1/4
(R∗)3/4

P13 = B

√
R∗

kD∗

P14 = −Be−iω ×

×

{
D∗R∗ + µ

√
k
(

e−2iω
√
D∗R∗ − µ

√
k
)}

(D∗)5/4
(kR∗)3/4

P21 = Be−iω
(
kR∗

D∗

)1/4

P22 = Be−2iω

P23 = −Be−3iω

k1/4

(
R∗

D∗

)3/4

P24 = −B
√

R∗

kD∗

P31 = −B
√
kD∗

R∗

P32 = −Be−iω(k1/4)

(
D∗

R∗

)3/4

P33 = Be−2iω

P34 = −
Be−iω

(
e−2iω

√
D∗R∗ − µ

√
k
)

(kD∗)1/4
(R∗)3/4

P41 = −Be−iω(k3/4)×
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×

(
e−2iω

√
D∗R∗ − µ

√
k
)

(D∗)1/4
(R∗)3/4

P42 = B

√
kD∗

R∗

P43 = −Be−iω
(
kR∗

D∗

)1/4

P44 = B

(
e−2iω − µ

√
k

D∗R∗

)
(58)

P3 The elements of third idempotent:

P11 = −B
(

e2iω − µ
√

k

D∗R∗

)

P12 = −
Beiω

(
µ
√
k − e2iω

√
D∗R∗

)

(kD∗)1/4
(R∗)3/4

P13 = −B
√

R∗

kD∗

P14 = −Beiω ×

×

{
D∗R∗ + µ

√
k
(

e2iω
√
D∗R∗ − µ

√
k
)}

(D∗)5/4
(kR∗)3/4

P21 = Beiω
(
kR∗

D∗

)1/4

P22 = −Be2iω

P23 = −Be3iω

k1/4

(
R∗

D∗

)3/4

P24 = B

√
R∗

kD∗

P31 = B

√
kD∗

R∗

P32 = −Beiω(k1/4)

(
D∗

R∗

)3/4

P33 = −Be2iω

P34 =
Beiω

(
µ
√
k − e2iω

√
D∗R∗

)

(kD∗)1/4
(R∗)3/4

P41 = Beiω(k3/4)×

×

(
µ
√
k − e2iω

√
D∗R∗

)

(D∗)1/4
(R∗)3/4

P42 = −B
√
kD∗

R∗

P43 = −Beiω
(
kR∗

D∗

)1/4

P44 = −B
(

e2iω − µ
√

k

D∗R∗

)
(59)

P4 The elements of fortht idempotent:

P11 = −B
(

e2iω − µ
√

k

D∗R∗

)

P12 =
Beiω

(
µ
√
k − e2iω

√
D∗R∗

)

(kD∗)1/4
(R∗)3/4

P13 = −B
√

R∗

kD∗

P14 = Beiω ×

×

{
D∗R∗ + µ

√
k
(

e2iω
√
D∗R∗ − µ

√
k
)}

(D∗)5/4 (kR∗)3/4

P21 = −Beiω
(
kR∗

D∗

)1/4

P22 = −Be2iω

P23 =
Be3iω

k1/4

(
R∗

D∗

)3/4

P24 = B

√
R∗

kD∗

P31 = B

√
kD∗

R∗

P32 = Beiω(k1/4)

(
D∗

R∗

)3/4

P33 = −Be2iω

P34 = −
Beiω

(
µ
√
k − e2iω

√
D∗R∗

)

(kD∗)1/4
(R∗)3/4

P41 = −Beiω(k3/4)×

×

(
µ
√
k − e2iω

√
D∗R∗

)

(D∗)1/4
(R∗)3/4

P42 = −B
√
kD∗

R∗

P43 = Beiω
(
kR∗

D∗

)1/4

P44 = −B
(

e2iω − µ
√

k

D∗R∗

)
(60)
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