
ARI The Bulletin of the Istanbul Technical University VOLUME 54, NUMBER 3
Communicated by Muhittin Gökmen

Incomplete Inverse Preconditioners

Fernando Alvarado
Department of Electrical and Computer Engineering, University of Wisconsin, 53706 Madison, USA

Hasan Dağ
Computational Science and Engineering Program, Informatics Institute, Istanbul Technical University,

34469 Maslak, Istanbul, Turkey
(Received 22 September 2003)

Incomplete LU factorization is a valuable preconditioning approach for sparse iterative solvers. An “ideal” but
inefficient preconditioner for the iterative solution of Ax = b is A−1 itself. This paper describes a preconditioner
based on sparse approximations to partitioned representations of A−1, in addition to the results of implementation
of the proposed method in a shared memory parallel environment.

The partitioned inverses are normally somewhat sparse. Their sparsity can be enhanced with suitable ordering
and partitioning algorithms. Sparse approximations to these partitioned inverse representations can be obtained
either by discarding selected nonzero entries of these inverses or by precluding the creation of some inversion fills.
Experimental results indicate that the use of these partitioned incomplete inverses as preconditioners results in
excellent highly parallel preconditioners.

Keywords: Conjugate gradient, preconditioner, iterative methods, parallel computation, partitioned inverse
method.

1. Introduction

Many important practical problems, such as
circuit analysis, numerical solution of boundary
value problems and partial differential equations,
discretization of elliptic boundary value problems
by finite difference or finite element methods, give
rise to large systems of linear equations. For
many large linear systems, direct methods based
on variants of Gaussian elimination are not prac-
tical, even when sparse matrix methods are used.
Iterative methods are used to solve very large lin-
ear systems.

For the sake of completeness a brief introduc-
tion to iterative methods specifically to the con-
jugate gradient method [1] is presented next. An
iterative method to solve an n × n linear system
starts with an initial approximation x0 to the
solution x and generates a sequence of vectors
{xi}∞i=1 that converges to the solution x. Con-
sider the linear equations:

Ax = b, (1)

where it is assumed for the rest of the paper that
n×n matrix A is symmetric and positive definite.
The minimization of the quadratic function

Q(x) =
1

2
xTAx− bTx (2)

is equivalent to the solution of (1). There are
numerous iterative methods to solve (2). Most of
these methods are of the form:

xi+1 ← xi − αi pi (3)

where the pi vectors represent a sequence of di-
rection vectors and the scalars αi represent a se-
quence of scalars which determine the distance to
be moved along the pi direction at every itera-
tion. For more details about iterative methods
refer to [2-6]. Some of the most widely used it-
erative methods are based on the conjugate gra-
dient method [1]. In theory, a conjugate gradient
method converges to an exact solution in at most
n iterations if exact arithmetic is used. Thus, a
conjugate gradient method is sometimes consid-
ered as a direct method. In practice, however, the
conjugate gradient method is used as an iterative
method.

The actual rate of convergence of a conjugate
gradient method depends on the distribution of
eigenvalues, which implicitly defines the condi-
tion number of A, κ(A), defined as ‖A‖ · ‖A−1‖.
If the two norm is used, κ(A) = κ2(A) = λmax(A)

λmin(A) .

The bigger the condition number, the slower the
convergence rate [7-9]. A desire to improve the
convergence rate of the conjugate gradient algo-
rithm leads to the preconditioned conjugate gra-

Incomplete Inverse Preconditioners

dient algorithm. Preconditioning corresponds to
a congruence (linear) transformation:

Â = SAST , (4)

where S is a nonsingular matrix chosen so that
κ(Â) < κ(A) [10]. The system to be solved be-
comes:

Âx̂ = b̂, (5)

where x̂ = S−Tx and b̂ = Sb. There are several
ways of choosing the matrix S. An ideal precon-
ditioned matrix Â can be obtained by the choice
of S = A−1/2 so that Â = I , but this is not a
practical choice. The preconditioned conjugate
gradient method is rearranged in such a way
that it does not make explicit use of matrix S.
Instead, it uses matrix A and a new symmetric
positive definite matrix M , defined as (STS)−1.
This matrix M is also not computed explicitly.
The following algorithm describes the basic pre-
conditioned conjugate gradient method [5].

Initialize:
Select x0

Let r0 = b−Ax0

Solve M r̃0 ← r0

Let p0 ← r̃0

Iterate:
αk ← −(r̃k, rk)/(pk, Apk)
xk+1 ← xk − αkpk
rk+1 ← rk + αkApk

Solve M r̃k+1 = rk+1

βk ← (r̃k+1, bfrk+1)/(r̃k, rk)
pk+1 ← r̃k+1 + βkp

k

End:

The direction vectors pi are not specified ahead
of time, but rather are computed while execut-
ing the algorithm. The algorithm is stopped
when the norm of the residual vector ||rk+1|| be-
comes sufficiently small. It is desirable to be
able to solve the set of equations M r̃ = r eas-
ily. At the same time, the preconditioner M
should make the eigenvalue distribution of the
preconditioned system more clustered than that
of the original matrix A. A diagonal matrix
M = diag(a11, a22, · · · , ann) makes M r̃ = r very
easy to solve, but eigenvalue clustering is of-
ten not good enough with this choice. A com-

monly used preconditioner, the ILU precondi-
tioner [4, 5, 6, 11] is introduced in Section 2 for
the sake of completeness.

The preconditioned conjugate gradient method
(PCG) requires at each iteration two inner prod-
ucts, 3 saxpy operations, one matrix vector prod-
uct, two scalar comparisons, and a linear solver,
i.e., M r̃ = r. The linear solver can be imple-
mented as a forward and backward substitution
process. The dependencies associated with this
substitution limit the parallelism of PCG. This
paper assumes that the traditional ILU precon-
ditioner is available and concentrate on the so-
lution of the boxed line, that is, M r̃ = r, in
the above algorithm. Specifically, the paper in-
troduces a preconditioner based on the parti-
tioned inverse representation of ILU precondi-
tioner. With this preconditioner the linear-solver
part of the above algorithm becomes essentially a
matrix-vector product, which can be readily done
in parallel.

Partitioned incomplete inverse preconditioners
are introduced in Section 3 and experimental re-
sults are presented in Section 4.

2. Incomplete LU (ILU) Preconditioners

Given a symmetric positive definite matrix A,
the Cholesky factorization of A is

A = LDLT . (6)

For large systems A is usually sparse. Due to
fill-in, L can be considerably less sparse than A.
Thus instead of using L, an approximation to L
denoted by L̃ can be used:

A = L̃ D̃ L̃T +B (7)

where B 6= 0 is an error matrix, and L̃ is a
unit lower triangular matrix, which is more sparse
than L. This matrix implicitly defines M = L̃L̃T

(M is never computed explicitly) and it is called
an incomplete factorization of A [5] for general
matrix A and is called incomplete Cholesky for
symmetric matrix A. The term incomplete LU
will be used in this paper even though matrix A
is assumed to be symmetric.

There are several possible ways of construct-
ing and defining L̃. One possible way is to con-
struct L, and then discard those entries within
L that correspond to zero positions in A. This
approach is inefficient in that it requires the com-
putation of the entire L matrix, which is often

49

Fernando Alvarado and Hasan Dağ

a costly step. However, in a limited number of
experiments it has led to superior numerical per-
formance for least squares problems [12].

A more efficient way to obtain ILU factors is
to perform an ordinary factorization of a matrix,
but preclude the creation of any new nonzeros.
That is, all computation involving fills is sup-
pressed during the factorization process. This
simple departure from ordinary LU factorization
is the “level 0” ILU algorithm [11].

The numerical performance of an ILU algo-
rithm can be improved if some fill-ins are per-
mitted to occur. The simplest possibility is to
permit the occurrence of fills that involve original
matrix entries, but preclude the creation of fill en-
tries that depend on prior fills. This is the “level
1” ILU algorithm. Further levels of fills based on
prior fills may be permitted, defining higher level
incomplete factorization algorithms. The more
levels that are included, the closer L̃ can be ex-
pected to be to L. However, more accuracy also
implies greater density. It has been observed that
the number of iterations of the conjugate gradient
method does not depend heavily on the number
of nonzeros (fills) precluded, rather it depends on
the norm of the error matrix B [13]. This paper
assumes that the (incomplete) factors of A have
already been computed.

3. Partitioned Incomplete Inverse Precon-
ditioners

This section provides a brief review of the
partitioned inverse method (known also as W-
matrix method) for solving sparse linear equa-
tions [14, 15]. A sparse set of linear equations
(1) can be solved in three steps: forward sub-
stitution, diagonal scaling and back substitution.
The three steps is preceded by an ordering to re-
duce factorization fills and factorization of A into
LDLT .

Ly = b, Dz = y, LTx = z. (8)

Define:

W = L−1. (9)

The forward and back substitution steps (8) are
replaced with the matrix-vector products:

y = W b, z = D−1 y, x = W T z. (10)

These products are quite amenable to parallel
processing. The matrix L can also be expressed

as the product of elementary matrices:

L = L1L2 · · ·Ln, (11)

where the elementary matrix Li is an identity ma-
trix except for its ith column, which contains col-
umn i of L. The inverse of L can be written as:

W = L−1 = WnWn−1 · · ·W1. (12)

The matrix W is a unit lower triangular matrix
that is usually considerably denser than L. Its
graph is the transitive closure of the graph asso-
ciated with L [14].

An alternate representation for W is based on
grouping the elementary inverse factors Wi into
m groups of adjacent factor, with m < n :

W = ŴmŴm−1 · · · Ŵ1 (13)

where each Ŵk is the aggregate of several elemen-
tary inverse factor Wj . By aggregating the prod-
uct in (12) into m factors (partitions) rather than
just one factor (partition), the combined sparsity
structure of these m factors of W can be the same
as the structure of L itself. With suitable ordering
and partitioning algorithms, it is usually possible
to have m � n [14-17]. With the partitioning
of W the solution to linear system (1) takes the
form:

x = Ŵ T
1 · · · Ŵ T

m−1 Ŵ
T
mD

−1 Ŵm Ŵm−1 · · · Ŵ1 b,

(14)

where x is computed by matrix-vector product
from right to left.

Proposal 1: Computation of each Ŵi can be
done independently.
Proof : It is clear from the definition of Ŵi,

Ŵi = WjWj+1 · · · Wj+k = L−1
j+k · · · L−1

j+1 L
−1
j �.

Proposal 2: Assume that number of available
processors is greater than number of partitions.
Then, the computational complexity of parti-
tioned inverses is determined by the dimension of
the largest partition. Hence, it is bounded above
by O(l3) where l is the dimension of the largest

partition Ŵj .
Proof : It is the result of proposal 1 �.

This paper deals with both the unpartitioned
version of W , which generally has many fills be-
yond those of L, defined by (10) and partitioned

50

Incomplete Inverse Preconditioners

ILU1 (single partition)ILU1Inverse of

(3 partitions)ILU1Inverse of (2 partitions)ILU1Inverse of

Figure 1. The relationship between inversion fills
and number of partitions used when computing the
inverse of ILU1. The solid dots show the inversion
fills.

versions of W as expressed by (14). The advan-
tage of dealing with unpartitioned W is that only
two serial steps are required to perform the paral-
lel repeat solution phase of a problem. The disad-
vantage is that the number of inversion fills is very
high and it is computationally expensive. The
advantage of dealing with the partitioned W is
that number of inversion fills decreases substan-
tially and the issue of load distribution becomes
easier. The disadvantage is that the number of
serial steps increases twice the number of parti-
tions. The relationship between inversion fills and
number of partitions is illustrated in Fig. 1 for a
20× 20 power network matrix.

Fig. 1 shows that the unpartitioned inversion
of ILU1 has 26 inversion fills. Number of fills de-
creases to 6 with two partitions, and it decreases
to 2 with three partitions.

Studies [14, 18] show the clear advantages of us-
ing partitioned inverse (W-matrix) method based
triangular solvers instead of substitution based
solvers on parallel environments. Higham and
Pothen [19] conclude that the partitioned triangu-
lar solver is a stable method so long as the matrix
L is well conditioned. Two more studies [20, 21]
are also suggesting approximate inverses as pre-
conditioners. Both studies obtain approximate
inverses by optimization. Two ways of enhanc-

ing the sparsity of partitioned inverses (as well as
partitioning) are explored. Each of these involves
approximation, in the same sense that using the
ILU method involves approximations within the
L. An explanation as to why partitioned inverse
preconditioners work well as preconditioners is
provided in the appendix.

3.1. Sparsified Partitioned Inverse Precon-
ditioners (SW xILUi)

Sparsification is a very simple concept: small
numeric entries in the W matrix are discarded.
Empirical observation of numerical values in nu-
merous W matrices has led us to the observation
that many of the numeric entries, particularly
those in positions that were zero in L, have nu-
merical values that are quite small. As in the case
of ILU factorization, discarding of these small nu-
meric entries can take place a-posteriori (after
all entries in W have been computed), or can
take place during the computation. Clearly, a-
posteriori discarding of numeric entries negates
many of the computational advantages of sparsi-
fication, since W is often quite dense. However, it
is more straightforward and issues of selection of
discarding criteria are much simpler. This is the
approach considered in this subsection. Once W
has been obtained, its sparsified version W̃ can
be used for the iterative solution of the original
problem. Furthermore, the same matrix can be
used for many different right hand side vectors b,
thereby compensating for the initial inefficiency
in the computation of W̃ . This type of precon-
ditioner is denoted by SW xILUi where x is used
as the criterion for discarding entries of W , and
ILUi denotes the factors from which the inverse
factors are obtained, e.g., SW 0.05ILU0 means in-
verse factors obtained by inverting zero level ILU.
Any nonzero inverse entry with a value of 0.05 or
smaller is discarded after the computation of W .
An algorithm for SW xILUi can be given as:

Algorithm 1 Sparsified Partitioned Inverses
(SW xILUi):

• Compute the level i incomplete LU factors
of matrix A,

• Invert these incomplete LU factors (using
one or multiple partitions),

• Discard nonzero entries in these inverted
(partitioned) incomplete LU factors with

51

Fernando Alvarado and Hasan Dağ

absolute value x or smaller.

Experimental indication that discarding small
entries in W does not have a significant effect on
the solution vector was presented in [22]. This
paper further confirms these earlier results.

3.2. Partitioned Incomplete Inverse Pre-
conditioners (IWjILUi)

A second possibility for sparsification of the
W matrices can be based on the concept of “fill
level,” as in the case of ordinary ILU precondi-
tioners. Here, fills do not refer to fills that oc-
cur during the factorization process but to fills
that occur during the inversion of L. Since the
determination of which entries of the W matrix
to retain is based on topological considerations
alone, this type of preconditioner can be called a
(topological) partitioned incomplete inverse pre-
conditioner. This preconditioner will be denoted
by IWjILUi. Usually first, second, and maybe
third level fills are allowed in ILU precondition-
ers. As in the case of the ILU preconditioners,
it is possible to allow no inversion fill at all, to
allow inversion fills on existing elements, or to al-
low inversion fills on both existing elements and
first level inversion fills, and so on. The IWjILUi
denotes many possible ways of obtaining (topo-
logical) partitioned incomplete inverse precondi-
tioners, where j denotes the level of inversion fills
for partitioned incomplete inverse precondition-
ers, and i denotes the level of factorization fills
for ILU. For example, IW2ILU1 indicates level
one ILU and level two inversion fills. In the ex-
treme case IWnILUn means full factorization and
full inversion. An algorithm for IWjILUi can be
given as:

Algorithm 2 Partitioned Incomplete Inverses
(IWjILUi):

• Compute level i incomplete LU factors of
matrix A,

• Invert these incomplete LU factors (using
one or multiple partitions) allowing up to j
levels of fills in the inversion process.

3.3. Sparsified Partitioned Incomplete
Preconditioners (SW x

j ILUi)
A third possibility for sparsification is a combi-

nation of 3.1 and 3.2. This variant can be denoted
by (SW x

j ILUi). Algorithm 1 is a special case of

this variant. That is, when j = n, SW xILUi can
be obtained. The following algorithm is suggested
for this variant.

Algorithm 3 Sparsified Partitioned Incom-
plete Inverses (SW x

j ILUi):

• Compute level i incomplete LU factors of
matrix A,

• Invert these incomplete LU factors (with or
without multiple partitions) allowing up to
j levels of fills in the inversion process,

• Discard nonzero entries in these inverted
(partitioned) incomplete LU factors with
absolute value x or smaller.

There are two kinds of parallelism available
in the proposed preconditioners. The first par-
allelism is in the computation of partitioned in-
complete inverse preconditioners which is not ex-
ploited in this paper. The second parallelism is
in the solution phase. The parallelism available
in the solution phase of all the proposed par-
titioned incomplete inverse preconditioners de-
pends on the number of partitions used. In the
case of a single partition defined by (10) the par-
allelism is quite extreme: only two serial steps
are required. In the multiple partitions case, de-
fined by (14), number of serial steps in solving
the linear system is twice the number of parti-
tions. The optimal number of partitions will de-
pend on the dimension of matrix, parallel envi-
ronment and the ordering method, if any, is used.

The storage requirement for the proposed pre-
conditioners is bounded by a full triangular ma-
trix. As the number of partitions increases the
storage requirement decreases due to lesser num-
ber of inversion fills. In the computation pro-
cess of the preconditioners two auxiliary single-
dimension arrays of length n are used. One of the
array is used to keep inversion level information.
That is, array stores zero for every entry initially
and increases by one each time an inversion fill oc-
curs. Next time when an inversion fill occurs the
level information is checked to see whether new
fill is due to earlier fills or due to original nonze-
ros. The second array is used for fast access to
nonzero entries in the linked-list structure.

Ordering issues are not studied in this paper.
It is true, however, that ordering has big effect
on number of iterations with ILU precondition-

52

Incomplete Inverse Preconditioners

Table 1
Statics for test matrices.

Matrix Size NNZ AvgNNZ κ(A) F-Fils Inv-Fills
s1084 1084 3966 3.76 10 2124 44282
s1993 1993 7443 3.73 11 5318 145868
Bp1390 1209 4317 3.57 28594 2084 72596
Bp4403 3790 13862 3.73 19670 10234 335902
Bp8235 7060 25134 3.56 14428 15188 655898
f40c01 1000 3750 3.75 5570 14454 85198
f40c04 1104 3786 3.43 2391 12146 70272
im3k 3516 24828 7.06 1.4E6 33174 178216
im25k 26607 176435 6.63 121880 †

† : Not enough room for explicit inversion due to excessive amount of inversion fills.

ers and consequently on the proposed precondi-
tioners [13, 23]. It also has effect on the number
of optimal no-inversion fills partitions for inverse
computation [14]. The secondary ordering also
changes number of optimal partitions for inverse
factors. In this paper partitions is done by al-
most equally dividing the matrix by number of
processors used choosing last partitions slightly
smaller than the rest of partitions. This is due to
high concentration of nonzeros at the right-lower
corner of the matrix.

4. Discussion of Test Results

In this section test results are presented follow-
ing the description of both the testing environ-
ment and the data. The results for the unparti-
tioned case defined by (10) and the partitioned
case defined by (14) for each of the proposed al-
gorithm are presented separately. Many tests for
both single and multiple partitions incomplete in-
verse preconditioners are conducted, but only a
few are presented in the paper due to space lim-
itations. The conclusions, however, are based on
all the tests conducted.

4.1. Description of environment and test
matrices

The test environment was a shared memory
machine, a Sequent Symmetry, with 15 proces-
sors. Each 386-based Weitech processor with 16
MB memory. The maximum number of proces-
sors that can be allocated is 14. The environ-
ment is multi-user and time-sharing. Therefore,
each test is run 10 times except im25k, which is
run only once, and the average cpu times are re-
ported.

The programming language is C and a data

structure is made up of doubly linked lists. Both
row and column numbers of nonzero entries are
accessible.

Table 1 shows the statistics for the test ma-
trices, where NNZ denotes number of nonzeros,
AvgNNZ denotes average number of nonzeros per
row, κ(A) denotes the condition number of A, F-
Fills denotes the number of factorization fills and
Inv-Fills denotes total number of inversion fills.
The condition number, factorization fills and in-
versions fills are obtained after an ordering of the
matrices by multiple-minimum (mmd) degree of
Liu [24].

Matrices s1084, s1993, Bp1390, Bp4403 and
Bp8235 are power network matrices. Matrices
s1084 and s1993 represent power network con-
nections and are strictly diagonally dominant.
Hence, they are very well-conditioned as it is ap-
parent from Table 1. Matrices Bp1390, Bp4403
and Bp8235 are Jacobian matrices containing the
power delivery information. They are also di-
agonally dominant and their condition number
varies depending primarily to the length of trans-
mission/distribution lines. Matrices f40c01 and
f40c04 are finite element matrices taken from boe-
ing collation [25]. f40 stands for file number in
the boeing collection and c0i correspond to the
ith item in the file. Matrices im3k and im25k are
related to animal models obtained from [26].

The most time consuming part of PCG is the
preconditioner solver and matrix-vector product
at each iteration. The matrix-vector product is
done by row-interleaving. That is, processor 1
gets row one, processor 2 gets row 2, processor p
gets row p assuming p processors are used. The
next row for processor 1 is (p+1) and for proces-
sors 2 is (p+2) etc. By interleaving a balanced

53

Fernando Alvarado and Hasan Dağ

Table 2
Comparison of ILUi and Sparsified partitioned inverse preconditioners (1 Partition).

Number of iterations/cpu(s) with preconditioner:

Matrix ILU0 ILU1 SW .01ILU0 SW .01ILU1 SW .05ILU0 SW .05ILU1 SW .1ILU0 SW .1ILU1

s1084 7/1.1 4/0.8 7/1.4 4/2.4 7/1.4 6/2.5 7/1.4 7/2.4
s1993 6/1.8 4/1.6 7/2.4 4/4.1 7/2.4 6/4.2 7/2.4 7/4.2
Bp1390 57/7.9 18/3.1 57/4.9 18/4.6 58/4.7 18/4.4 60/4.7 18/4.3
Bp4403 33/15.5 20/11.3 32/9.0 20/10.0 33/8.9 20/9.6 32/8.5 23/9.8
Bp8235 34/29.3 22/22.5 34/17.1 22/19.3 35/16.8 22/18.7 35/16.3 24/18.8
f40c01 100/11.8 31/5.6 100/5.0 31/6.9 101/5.0 33/6.7 103/4.9 36/6.7
f40c04 40/4.9 20/4.1 40/2.7 20/8.6 40/2.6 29/8.4 44/2.7 29/8.4
im3k 46/35.3 23/23.4 47/37.6 24/102 50/33.5 36/96.2 56/33.2 58/98.6

load distribution is accomplished. As Figs. 2-4
show the matrix multiplication part of the code is
scalable and achieves near ideal speed-up as long
as enough data is available. The saxpy and norm
computation is done by splitting vectors into p
contiguous parts and assigning one part to each
of p processors. That is, processor 1 gets the first
chunk of a vector, processor 2 gets the second
chunk of a vector, etc. This kind of load distri-
bution prevents cache-misses.

The initial guess of PCG is zero and the stop-
ping criterion is 5 · 10−6. That is, the algorithm
stops when ‖r̃‖ < 5·10−6. Even though the resid-
ual for the preconditioned system is used in test-
ing for stopping, the convergence of the actual
system is also checked at the end of convergence.
In all cases tested, the use of the residual of the
preconditioned system for stopping the algorithm
proved to be adequate.

The reported cpu(second) time in Tables 2–8
include solution time of the PCG method exclud-
ing I/O time and is obtained using 14 proces-
sors. The cpu time does not include the com-
putation time for ILU preconditioners. They are
assumed to be available. The computation time
of the partitioned incomplete inverse precondi-
tioners, however, is included in the reported cpu
time. ILU (also called Incomplete Cholesky) pre-
conditioner is used in the square-root free form,
i.e. LDLT , in our implementation. In the solu-
tion phase of PCG only the diagonal scaling part
is parallelized. The forward and backward sub-
stitutions do not lend themselves to paralleliza-
tion. In order to have a fair comparison between
ILU preconditioners and the proposed precondi-
tioners, even though they are amenable to par-
allel processing, the computation of partitioned
incomplete inverse preconditioners is also not par-

allelized.

4.2. Sparsified partitioned inverse precon-
ditioners

In this section, sparsified partitioned inverse
preconditioners are compared to traditional ILU
preconditioners. Tables 2-4 present some of the
test results. The cpu numbers are in seconds and
are the average of 10 runs except im25k test case.
Total of 14 processors are used in obtaining these
cpu times.

Tables 2 and 3 use a pre-specified sparsification
criterion while Table 4 uses a row norm based
sparsification. That is, each nonzero entry on
a row is compared to the given percentage of
two norm of the row and the necessary action
is taken. In Table 4, SW fiILUi refers to spar-
sified partitioned inverses where fi indicates the
two norm-based sparsification and i indicates the
percentage of the norm. Results indicate that
norm-based sparsification is not as good as a pre-
specified criterion based sparsification. In both
cases however, the proposed preconditioners per-
form better than ILU preconditioner in almost
all the test cases when 4 partitions are used. For
small well-conditioned matrices such s1084, s1993
the proposed preconditioners perform better with
either a single partition or with two partitions.
The reduction in cpu time is as big as 50% when
the proposed preconditioners are used. In the
case of im25k with 4 processors the cpu time for
the proposed preconditioners is much bigger than
that of ILU. This is due to both the lack of pro-
cessors to use in the solution phase of PCG and
the use of a single processor for computing the
partitioned inverse preconditioner. The complete
inverse computation is expensive. Note that if a
bigger sparsification criterion is used the number

54

Incomplete Inverse Preconditioners

Table 3
Comparison of ILUi and Sparsified partitioned inverse preconditioners (4 Partitions).

Number of iterations/cpu(s) with preconditioner:

Matrix ILU0 ILU1 SW .01ILU0 SW .01ILU1 SW .05ILU0 SW .05ILU1 SW .1ILU0 SW .1ILU1

s1084 7/1.1 4/0.8 7/1.3 4/1.2 7/1.3 5/1.3 7/1.3 7/1.4
s1993 6/1.8 4/1.6 6/1.9 4/2.1 7/2.0 6/1.2 7/1.9 7/2.2
Bp1390 57/7.9 18/3.1 57/4.3 18/2.4 58/4.3 18/2.3 58/4.3 18/2.3
Bp4403 33/15.5 20/11.3 32/8.1 20/6.8 32/8.0 20/6.6 33/8.0 21/6.7
Bp8235 34/29.3 22/22.5 34/15.4 22/13.2 35/15.6 22/12.8 35/15.3 23/12.8
f40c01 100/11.8 31/5.6 100/5.4 31/3.1 101/5.3 33/3.1 103/5.3 39/3.2
f40c04 40/4.9 20/4.1 40/3.0 20/4.0 40/3.0 23/3.9 43/3.1 29/4.0
im3k 46/35.3 23/23.4 47/18.4 23/32.6 47/17.0 28/32.6 49/16.8 38/34.4
im25k 21/124.3 11/85.3 21/188.4 12/8137 22/187.0 14/840.5 22/185.5 15/859.0

Table 4
Comparison of ILUi and Sparsified (wrt row norm) partitioned inverse preconditioners (4 Partitions).

Number of iterations/cpu(s) with preconditioner:

Matrix ILU0 ILU1 SW f1ILU0 SW f1ILU1 SW f2ILU0 SW f2ILU1 SW f5ILU0 SW f5ILU1

s1084 7/1.1 4/0.8 7/1.3 4/1.3 7/1.3 4/1.2 7/1.3 5/1.3
s1993 6/1.8 4/1.6 6/1.9 4/2.1 6/1.9 4/2.0 6/1.9 5/2.1
Bp1390 57/7.9 18/3.1 57/4.3 18/2.3 57/4.3 18/2.4 58/4.3 23/2.6
Bp4403 33/15.5 20/11.3 32/8.1 20/6.9 32/8.1 20/6.8 33/8.2 20/6.7
Bp8235 34/29.3 22/22.5 34/15.7 22/13.8 34/15.5 22/13.2 35/15.6 23/12.9
f40c01 100/11.8 31/5.6 113/5.8 66/4.6 118/5.9 82/5.2 151/7.1 155/8.1
f40c04 40/4.9 20/4.1 40/3.0 20/4.1 40/3.0 21/4.0 40/3.0 22/3.9
im25k 21/124.3 11/85.3 23/211.2 16/1846 25/213 19/1912 34/225 33/1839

Table 5
Comparison of ILUi and partitioned incomplete inverse preconditioners (1 Partition).

Number of iterations/cpu(s) with preconditioner:

Matrix ILU0 ILU2 IW2ILU0 IW2ILU1 IW4ILU0 IW4ILU1 IWnILU0 IWnILU1

s1084 7/1.1 4/0.8 7/1.0 6/1.1 7/1.1 6/1.4 7/1.1 4/1.8
s1993 6/1.8 4/1.6 7/1.7 6/2.1 6/1.9 6/2.5 6/1.9 4/3.3
Bp1390 57/7.9 18/3.1 236/12.8 308/17.6 117/7.6 285/18.3 57/4.7 18/4.4
Bp4403 33/15.5 20/11.3 110/19.3 168/30.6 70/14.0 142/29.2 33/8.9 20/9.4
Bp8235 34/29.3 22/22.5 101/33.3 302/97.6 29/19.7 147/55.4 34/16.6 22/18.5
f40c01 100/11.8 31/5.6 112/5.3 129/7.5 101/5.1 86/6.6 100/5.3 31/7.8
f40c04 40/4.9 20/4.1 41/2.3 34/3.2 40/2.4 33/3.8 40/2.4 20/8.7
im3k 46/35.3 23/23.4 75/20.7 99/31.6 69/24.3 99/37.1 46/42.8 23/105.4

55

Fernando Alvarado and Hasan Dağ

5 10 15 20

5

10

15

20

Number of processors

 S
pe

ed
up

Scalability of ILUi

5 10 15 20

5

10

15

20

Number of processors

 S
pe

ed
up

Scalability of IWjILUi

0 5 10 15
0

50

100

150

200

Number of processors

Cp
u(

s)

Comparison of ILU0 and IWjILU0

0 5 10 15
0

50

100

150

200

250

Number of processors

Cp
u(

s)

Comparison of ILU1 and IWjILU1

Ideal Ideal

Av

ILU 0,1

ILU0

IW2ILU0

IW4ILU0

Av

IW2ILU1

IW4ILU1

ILU1

IW2ILU0 4IW ILU0’

Figure 2. Comparisons of traditional ILU and the proposed partitioned incomplete inverse preconditioners
(IWjILUi) in terms of both scalability and cpu time for matrix Bp8235. Four partitions are used for computing
partitioned inverses. Av refers to matrix vector product.

5 10 15 20

5

10

15

20

Number of processors

 S
pe

ed
up

Scalability of ILUi

5 10 15 20

5

10

15

20

Number of processors

 S
pe

ed
up

Scalability of IWjILUi

0 5 10 15
0

50

100

150

Number of processors

Cp
u(

s)

0 5 10 15
0

50

100

150

Number of processors

Cp
u(

s)ILU0

IW2ILU1

IW4ILU1

ILU1

Av Av

Ideal

Comparison of ILU0 and IWjILU0 Comparison of ILU 1 and IW jILU 1

IW2ILU0IW4ILU0

ILU0,1

IW2ILU0, IW4ILU0

Ideal

Figure 3. Comparisons of traditional ILU and the proposed partitioned incomplete inverse preconditioners

(IWjILUi) in terms of both scalability and cpu time for matrix im3k. Four partitions are used for computing

partitioned inverses. Av refers to matrix vector product.

56

Incomplete Inverse Preconditioners

5 10 15 20

5

10

15

20

Number of processors

 S
pe

ed
up

5 10 15 20

5

10

15

20

Number of processors

 S
pe

ed
up

0 5 10 15
0

100

200

300

400

Number of processors

Cp
u(

s)

0 5 10 15
0

100

200

300

400

Number of processors
Cp

u(
s)ILU 0

ILU00IW

ILU00SWf1

ILU10IW

IdealIdeal

Av Av

ILU10SWf1
ILU00IW ’

ILU 1

ILU10IW

ILU 0,1

Figure 4. Comparisons of traditional ILU and the proposed partitioned and sparsified incomplete inverse precon-

ditioners (IWjILUi and SW x
j ILUi) in terms of both scalability and cpu time for matrix im25k. Four partitions

are used for computing the partitioned inverses. Av refers to matrix vector product.

of iterations becomes higher, but cpu time does
not necessarily increase in all cases. Also note
that obtaining the proposed preconditioner from
higher level of ILU does not mean smaller number
of iterations. For example, obtaining SW f1ILUi
from ILU0 has smaller number of iteration than
that of obtaining from ILU1, see Table 4. This is
because ILU0 has less number of inversion fills
than ILU1. Thus, the difference (in norm for

example) between W f1
2 ILU0 and full inverse of

ILU0 is smaller than that of W f1
2 ILU1 and full

inverse of ILU1.

4.3. Partitioned incomplete inverse pre-
conditioners

In this section the partitioned incomplete in-
verse preconditioner are compared to traditional
incomplete LU preconditioners. For ILU precon-
ditioners level zero and level one are used.

For the partitioned incomplete inverse precon-
ditioners inversion fill levels from zero to four and
a full inversion are used. Tables 5 and 6 present
some results for these comparisons. For single
partition case the proposed preconditioners are
comparable to ILU preconditioners. For multiple
partitions case, however, the proposed precondi-
tioners perform better than ILU in terms of cpu
time for all test cases. This is because as the
number of partitions increases the amount of in-
version fills decreases. Hence, incomplete inver-
sion approximates full inversion better. If higher

level of inversion fills is allowed in addition to mul-
tiple partitions, then the incomplete inverse ap-
proximates complete inverse more closely. This
is a valid statement for all the proposed parti-
tioned incomplete inverse preconditioners. For
very large matrices multiple partitions must be
used. Otherwise the amount of inversion fills will
nullify any advantage of the proposed precondi-
tioners. That is why, im25k is not tested with one
partition. The im25k row in Table 6 has the fol-
lowing columns for the proposed preconditioners.
The columns are in order of IW0ILU0, IW0ILU1,
IW1ILU0, IW1ILU1, IW2ILU0, and IW2ILU1.
Note that the number of iterations for IWnILUi
is the same as that of corresponding ILUi as ex-
pected.

4.4. Sparsified partitioned incomplete in-
verse preconditioners

In this section test results of sparsified parti-
tioned incomplete inverse preconditioners are pre-
sented. The sparsification is based on norm of
each row. Sparsification is done after computing
the partitioned incomplete inverse precondition-
ers. SW f1

j ILUi refers to sparsified partitioned in-
complete inverse preconditioner that is obtained
from ILUi by allowing up to j level of inversion
fills and using norm based sparsification. Any
nonzero entry in a row which is less than 1% of
the two norm of the row is discarded. All diago-
nal entries and the largest nonzero entry in each

57

Fernando Alvarado and Hasan Dağ

Table 6
Comparison of ILUi and partitioned incomplete inverse preconditioners (4 Partitions).

Number of iterations/cpu(s) with preconditioner:

Matrix ILU0 ILU1 IW2ILU0 IW2ILU1 IW4ILU0 IW4ILU1 IWnILU0 IWnILU1

s1084 7/1.1 4/0.8 7/0.9 4/0.8 7/1.0 4/0.9 7/1.0 4/0.9
s1993 6/1.8 4/1.6 6/1.5 5/1.6 6/1.5 4/1.6 6/1.5 4/1.5
Bp1390 57/7.9 18/3.1 63/4.4 40/3.2 57/4.09 20/2.0 57/4.1 18/2.1

Bp4403 33/15.5 20/11.3 54/11.2 47/10.9 36/8.3 24/6.8 33/7.9 20/6.5
Bp8235 34/29.3 22/22.5 62/23.1 67/26.9 39/16.4 31/15.1 34/14.9 22/12.4
f40c01 100/11.8 31/5.6 100/5.4 38/3.1 100/5.4 36/3.3 100/5.4 31/3.3
f40c04 40/4.9 20/4.1 40/2.6 23/2.5 40/2.6 22/2.7 40/2.6 20/4.0
im3k 46/35.3 23/23.4 51/15.1 46/18.3 49/16.1 46/20.3 46/20.1 23/33.8
im25k 21/124.3 11/85.3 22/71.3 14/127.6 21/103 13/138 21/162 13/142

Table 7
Comparison of ILUi and sparsified partitioned incomplete inverse preconditioners (1 Partition).

Number of iterations/cpu(s) with preconditioner:

Matrix ILU0 ILU1 SW f1
2 ILU0 SW f1

2 ILU1 SW f1
3 ILU0 SW f1

3 ILU1 SW f1
4 ILU0 SW f1

4 ILU1

s1084 7/1.1 4/0.8 7/1.3 6/1.5 7/1.4 6/1.7 1/1.5 6/1.8
s1993 6/1.8 4/1.6 7/2.2 6/2.6 7/2.3 6/2.8 6/2.3 6/3.1
Bp1390 57/7.9 18/3.1 225/12.3 307/17.3 181/10.7 176/11.1 116/7.5 284/17.7
Bp4403 33/15.5 20/11.3 109/19.6 172/31.3 102/19.1 170/35.4 70/14.4 146/29.2
Bp8235 34/29.3 22/22.5 101/34.0 311/99.7 75/27.4 176/62.2 51/21.0 147/ 54.8
f40c01 100/11.8 31/5.6 120/5.5 185/8.9 116/5.4 144/7.7 111/5.2 137/7.7
f40c04 40/4.9 20/4.1 41/2.7 34/3.6 41/2.7 33/3.8 40/2.7 33/4.2
im3k 46/35.3 23/23.4 73/20.3 99/31.2 73/21.9 97/33.0 69/22.9 99/35.1

Table 8
Comparison of ILUi and sparsified partitioned incomplete inverse preconditioners (4 Partitions).

Number of iterations/cpu(s) with preconditioner:

Matrix ILU0 ILU1 SW f1
2 ILU0 SW f1

2 ILU1 SW f1
3 ILU0 SW f1

3 ILU1 SW f1
4 ILU0 SW f1

4 ILU1

s1084 7/1.1 4/0.8 7/1.3 4/1.2 7/1.3 4/1.2 7/1.3 4/1.2
s1993 6/1.8 4/1.6 6/1.9 5/2.0 6/1.9 4/2.0 6/1.9 4/2.0
Bp1390 57/7.9 bf 18/3.1 85/5.7 86/6.0 63/4.6 40/3.4 62/4.6 33/3.1
Bp4403 33/15.5 20/11.3 55/11.9 47/11.3 47/10.6 35/9.2 36/8.7 24/7.3
Bp8235 34/29.3 22/22.5 62/24.1 66/27.2 47/19.5 45/20.7 39/16.9 31/15.8
f40c01 100/11.8 31/5.6 135/5.8 70/4.5 113/5.8 70/4.5 113/5.8 70/4.6
f40c04 40/4.9 20/4.1 40/3.0 23/2.9 40/3.0 22/2.9 40/3.0 22/3.1
im3k 46/35.3 23/23.4 51/15.4 46/18.7 50/15.6 49/20.2 50/16.0 48/20.6
im25k 21/124.3 11/85.3 23/71.1 17/133 23//95 16/144 23/137 16/152

58

Incomplete Inverse Preconditioners

0 50 100 150 200 250 300 350 400 450
-6

-5

-4

-3

-2

-1

0

1

2

Number of iterations

Lo
g1

0(
||r

||)

Residaul vs Number of iterations for Bp4403

Lo
g1

0(
||r

||)

0 10 20 30 40 50 60
-6

-5

-4

-3

-2

-1

0

1

2

3

Number of iterations

Residaul vs Number of iterations for im3k

0 5 10 15 20 25
-6

-5

-4

-3

-2

-1

0

1

Number of iterations

Lo
g1

0(
||r

||)

Residaul vs Number of iterations for im25k

IW ILU2 1

IW ILU2 1

0 20 40 60 80 100 120 140 160 180 200
-6

-5

-4

-3

-2

-1

0

1

2

Number of iterations

Lo
g1

0(
||r

||)

Residaul vs Number of iterations for Bp8235

LEGEND

ILU 0

ILU 0IW 0

ILU 02 IW
ILU1IW 2

SW f1
2 ILU 0

-.-.-

ooo

+++

IW ILU2 1

IW ILU0 0

Figure 5. Residual of preconditioned linear system vs number of iteration for different test matrices.

row are kept. Tables 7-8 show the test results for
these experiments. In the single partitioned case
sparsified partitioned incomplete inverse precon-
ditioners perform worse than ILU preconditioner
for most of the test cases. This is due to both
incomplete inversion and the following sparsifica-
tion which makes approximation to full inverse
worse.

Finaly, Table 9 shows the comparisons of the
cpu times to obtain some of the proposed precon-
ditioners to total solution time of PCG. The pre-
conditioners are obtained using 4 partitions and a
single processor is used for computing the inverses
but 14 processors for the rest of the solution in-
cluding the sparsification part of the precondi-
tioners. Expectedly as the dimension of matrix
becomes bigger cpu time gets bigger but not as
O(n3). If preconditioner is obtained from zero
level ILU with no inversion fills the cpu time for
obtaining the preconditioner is less than a third of
total solution time for the largest matrix tested.
If inversion process is also implemented in paral-
lel this cpu time will be a much smaller fraction
of total solution time. The number in the paren-

thesis for the sparsified preconditioners in Table 9
shows sparsification time. For the largest matrix
tested the sparsification is about a third of total
cpu time for obtaining the preconditioner. It can
be substantially reduced with higher number of
processors. In our case the maximum number of
processor is 14.

Figs. 2-4 show the scalability of both ILU and
the propsed preconditioners. As expeceted, ILU
preconditioners do not lend themselves to par-
allelization and their performance get worse as
number of processors increases. The proposed
preconditioners, on the other hand, are scalable.
The scalability is affected by the sparsity of pre-
conditioner. Fig. 5 shows the residual behavior
of the preconditioned system with respect to it-
erations and it suggests that zero level inversion
of ILU0 is not a good preconditioner for power
system jacobian matrices, but it is quite good for
animal model matrices.

5. Conclusions

Two new kinds of preconditioners based on
sparse approximations to partitioned representa-

59

Fernando Alvarado and Hasan Dağ

Table 9
Cpu (second) time to obtain some of the proposed preconditioners

cpu(s) for preconditioner/Total solution time(s)

Matrix Size IW0ILU0 IW2ILU0 IW2ILU1 SW f1
2 ILU0 SW .01ILU0

Bp4403 3790 1.1/72.4 1.3/11.4 1.5/11.1 1.9(.6)/12.2 2.1(.7)/8.3
Bp8235 7060 2.3/6.0 2.6/23.3 2.8/27.2 4(1.4)/24.6 3.9(.9)/15.8
im3k 3516 1.5/14.7 1.8/15.2 4.8/18.4 2.9(1.1)/15.3 5.3(1.8)/18.5
im25k 26607 21.3/71.8 63.6/161 106/141.8 94.3(30.4)/138.1 155.8(54.86)/307.2

tions of A−1 are introduced and compared against
well established traditional ILU preconditioners.
The proposed preconditioners perform as good
as ILU preconditioners when a single partition
is used in computing the inverse of ILU precondi-
tioner. They perform better than ILU precondi-
tioners in terms of both cpu time and scalability
when multiple partitions are used in computing
the inverse of ILU.

The scalability of the proposed preconditioners
are much better than that of ILU. The number of
iterations does not increase with the dimension of
matrix.

6. Acknowledgement

We would like to thank Ingacy Misztal for
providing us with the animal model test data.
We also like to thank the anonymous reviewers
for their constructive comments and suggestions
for improving the paper. The support from the
National Science Foundation under grant ECS-
9216308 is gratefully acknowledged.

References

[1] M. R. Hestenes and E. Stiefel, J. Res. Nat. Bur.
Stand. 49, 409 (1952).

[2] O. Axelsson, Iterative Solution Methods (Cam-
bridge University Press, 1994).

[3] R. Freund, G. Golub, and N. Nachtigal, Iterative
solution of linear systems (Cambridge University
Press, 1992).

[4] G. H. Golub and C. F. Van Loan, Matrix Com-
putations (Johns Hopkins University Press, Bal-
timore, 1989).

[5] J. M. Ortega, Introduction to Parallel and Vec-
tor Solution of Linear Systems (Plenum Press,
1988).

[6] D. M. Young, Iterative Solution of Large Linear
Systems (Academic Press., 1971).

[7] O. Axelsson and T. A. Lindskog, Numerische
Mathematik 48 499 (1986).

[8] A. Jennings, Journal of the Institute of Mathe-
matics and Applications 20, 61 (1977).

[9] A. van der Sluis and H. van der Vorst, Nu-
merische Mathematik 48, 543 (1986).

[10] R. A. Horn and C. R. Johnson, Matrix Analysis
(Cambridge University Press, 1990).

[11] T. Manteuffel, Mathematics of Computation 34,
473 (1980).

[12] H. Dağ, F. L. Alvarado, and H. Singh, Varia-
tions on ILU preconditioners applied to electric
network least squaresproblems, Proceedings of
the fifth SIAM Conference on Linear Algebra,
(Snowbird, Utah, 1994).

[13] I. S. Duff and G. A. Meurant, BIT 29, 635
(1989).

[14] F. L. Alvarado and R. Schreiber, SIAM Jour-
nal on Scientific and Statistical Computing, 446
(1993).

[15] M. K. Enns, W. F. Tinney, and F. L. Alvarado,
IEEE Transactions on Power Systems 5, 466
(1990).

[16] F. L. Alvarado, D. C. Yu, and R. Betancourt,
IEEE Transactions on Power Systems 5, 452
(1990).

[17] A. Pothen and F. L. Alvarado, SIAM Journal on
Scientific and Statistical Computing, (1992).

[18] F. L. Alvarado, A. Pothen, and R.Schreiber, Vol-
ume in Mathematics and its Applications 56,
141 (1993).

[19] N. J. Higham and A. Pothen, SIAM Journal
on Scientific and Statistical Computing 15, 139
(1994).

[20] T. Huckle and M. Grote, Technical Report
SCCM-94-03, Scientific Computing and Compu-
tational Mathematics Program (Computer Sci-
ence Department Stanford University, Stanford,
CA 94305, 1994).

[21] L. Y. Kolotilina and Y. Yeremin, SIAM Jour-
nal of Matrix Analysis and Applications 14, 45
(1993).

[22] H. Dağ and F. L. Alvarado, Propagation of per-
turbation in entries of power system W-matrices,
Proceedings of the North American Power Sym-
posium, (Carbondale, Illinois, 1991).

[23] H. Dağ and F. L. Alvarado, The effect of or-

60

Incomplete Inverse Preconditioners

dering on the preconditioned conjugate gradient
method for power system applications, Proceed-
ings of the North American Power Symposium,
(Manhattan, KS, 1994).

[24] J. W. H. Liu, ACM Transactions on Mathemat-
ical Software 11, 141 (1985).

[25] I. S. Duff, R. Grimes, and J. Lewis, ACM Trans-
actions on Mathematical Software 15, 1 (1989).

[26] I. Misztal and M. Perez-Enciso, Journal of Dairy
Science 76, 1479 (1993).

[27] J. W. H. Liu, SIAM Journal of Matrix Analysis
and Applications 11, 134 (1990).

[28] F. L. Alvarado, W. F. Tinney, and M. K. Enns,
Control and Dynamic Systems 41, 207 (1991).

[29] W. F. Tinney, V. Brandwajn, and S. M. Chan,
IEEE Transactions on Power Apparatus and
Systems 104, 295 (1985).

[30] J. G. Lewis, B. W. Peyton, and A. Pothen, SIAM
Journal on Scientific and Statistical Computing
10, 1146 (1989).

Appendix

Theoretical basis for the partitioned in-
verse preconditioners

Sparsification works quite well in part because
the discarded values are numerically small, but
also in part because of some more fundamental
topological properties of partitioned inverse ma-
trices. A perturbation to an entry of a connected
matrix A or to any of its factors propagates to the
entire solution vector x, regardless of the vector or
which entry has been perturbed. More formally,

(∆aij 6= 0) and (||b|| 6= 0) ⇒ ∆xj 6= 0 ∀ j
(15)

The numeric values of the perturbations to
many of the entries of x may be quite small, but
the effect is nonzero. Likewise, perturbations to
arbitrary entries of the L and LT factors of A
propagate to the entire solution vector:

(∆`ij 6= 0) and (||b|| 6= 0) ⇒ ∆xj 6= 0 ∀ j

(∆`ji 6= 0) and (||b|| 6= 0) ⇒ ∆xj 6= 0 ∀ j

The basic observation in this section is that
perturbations to individual entries of the inverse
factors W do not always have an effect on the
solution vector, depending on the solution vector
itself and on the nature of the elimination tree for
the matrix. This requires a review of the concept
of elimination trees [27] and factorization paths

Figure 6. A 20 by 20 perfect elimination matrix.

Solid dots denote nonzero entries of L and U factors.

Circles denote additional nonzero entries for the fac-

tored inverse matrices W and W T .

within elimination trees [28, 29]. Also of inter-
est are definitions of descendants and ancestors in
elimination trees [30]. Consider the matrix illus-
trated in Fig. 6. Its elimination tree is illustrated
in Fig. 7.

Of interest will be both the set of descendants
of a node, as illustrated in Fig. 7, and the set of
ancestors of a node, as illustrated in Fig. 7.

Consider two cases: perturbations to entries of
W and perturbations to entries of W T . The so-
lution procedure using the partitioned inverse re-
quires two matrix-vector products, as indicated
in (10).

Perturbations to W affect the computation of y
and consequently the computation of x. Pertur-
bations to entries of W T affect the computation
of x directly. Consider first the case of pertur-
bations to entries of W . The perturbed element
is wij , where i > j. There are three possible
right hand side vectors b, each leading to different
conclusions about the effect of the perturbation
∆wij . The possibilities are:

1. The right hand side vector b is a full vector
(that is, bj 6= 0 ∀ j).

2. The right hand side vector b is a singleton
(that is, b = ek) and the nonzero position k
corresponds to the column of the perturbed

61

Fernando Alvarado and Hasan Dağ

1

2

3

4

5

6 78 9

10

11

12

13

141516

17

18

19

20

1

2

3

4

5

6 78 9

10

11

12

13

141516

17

18

19

20

The set of descendants for node 10 is highlighted. The set of ancestors for node 10 is highlighted.

Figure 7. Elimination tree for matrix.

entry (that is, k = j).

3. The right hand side vector b is a singleton
ek, and the singleton position k does not
correspond to the column of ∆wij (that is,
j 6= k).

Observation (For case 1a): Perturbations ∆wij
when b is full, only element yi is affected by the
perturbation to wij . Because an element in y has
been affected, pre-multiplication by W T to ob-
tain x affects all elements in x in the ith column
of W T . These are the elements in the set of de-
scendants of i. Fig. 8 illustrates this situation for
the example at hand.
Observation (For case 2a): A perturbation to
an entry ∆wij when b = ej results in a pertur-
bation to the ith element of y, and consequently
to entries in x in the set of descendants for node
i. This is illustrated in Fig. 9.
Observation (For case 3a): A perturbation to
an entry of W when the right hand side is a sin-
gleton vector and k 6= j, the y vector is simply
not affected and consequently neither is the x vec-
tor. Thus, a perturbation to the W matrix in this
position will not have any effect on the solution
regardless of how large the numeric value of the
perturbation is. This is illustrated in Fig. 10.

Consider next perturbations to W T . Because
these perturbations are applied after the “forward
substitution” step, they have no effect on y. Once
again, three cases are possible.
Observation (For case 1b): The vector b is full.
In this case, the intermediate vector y will also
be full. A perturbation to position (i, j) of W T

results in a perturbation to the ith position of the

Figure 8. Perturbation to (10, 4) element of W , full

right hand side vector. ◦ denotes nonzero positions,

� denotes nonzero positions of particular relevance to

the computation, and • denotes changed values. Top

equation is Wb = y, bottom equation is W T z =

x, where z = D−1 y. Descendants of node 10 are

affected.

62

Incomplete Inverse Preconditioners

Figure 9. Perturbation to (10, 4) element of W , sin-

gleton right hand side vector e4 (j = k). Descendants

of node 10 are affected.

solution vector. Thus, a single element of x is
affected. This is illustrated in Fig. 11.

The second case involves perturbations to an
entry of W T when the right hand side vector b is
a singleton.
Observation (For case 2b): If b = ek, the only
nonzero entries in the vector y will be those en-
tries in the set of ancestors for node k. The only
way in which an element of x can be affected
by a perturbation to position (i, j) of W T is if
j ∈ anc(k), that is, if j belongs to the set of an-
cestors of k. In this case, only the ith position
of the solution vector x is affected. In all other
cases, the perturbation has no effect. This is il-
lustrated in Fig. 12.

The final case is when b is a singleton vector
ek, but j /∈ anc(k).
Observation (For case 3b): In this case the so-
lution vector x is not affected, regardless of how
large the perturbation to W T is. This is illus-
trated in Fig. 13.

All these cases are summarized in Table 10.

Figure 10. Perturbation to (10, 4) element of W , sin-

gleton right hand side vector e7 (j 6= k). No elements

of the solution vector are affected.

Figure 11. Perturbation to (10, 13) element of W T ,

full right hand side vector. Only element 10 of the

solution vector is affected.

63

Fernando Alvarado and Hasan Dağ

Table 10
Effect of perturbations to single entries of W .

∆W ∆W T

(∆wij , j < i) (∆wij , j > i)
Full RHS ∆xm,m ∈ desc(i) ∆xj

b = ej , j = k ∆xm,m ∈ desc(i) ∆xj
b = ej ∆xm,m ∈ desc(i) ∆xj

(j 6= k) (j 6∈ anc(k))

Figure 12. Perturbation to (10, 13) element of
W T , singleton right hand side vector e4, j ∈
anc(k). Only element 10 of the solution vector
is affected.

Figure 13. Perturbation to (10, 13) element of W T ,

singleton right hand side vector e7, j 6∈ anc(k). No

elements of the solution vector are affected.

64

