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The necessity for the curves, which have much better vehicle-road dynamical properties, has arisen since the
last quarter of the 20®* century, because the speed used especially on the railways was increased. Although the
dominance of the spiral curve as a transition curve has been still in progress by means of the common and wide
knowledge base and infrastructure such as lots of ready to use software and the traditional rules of the responsible
facilities, many investigations have been carried out on developing new curves, which can be used for the design
of horizontal geometry and have many advantages with respect to road dynamics, because the spiral curve has
been realized that it is not adequate for the road dynamics. So the transition curves superior for road dynamics
have been invented by using the properties of vehicle-road dynamics, represented by the function of lateral change
of acceleration that is the most important criteria to evaluate the curves in this manner. The recently invented
superior curves can be considered as Sinusoidal curve, Baykal curve, Tari-1 curve, and Tari-2 curve. Sinusoidal
curve is a known and applied curve joining a straight line with a circular arc by providing the condition of second-
degree contact related with properties of vehicle-road dynamics. Baykal curve is a fundamental curve joining two
straight lines without the necessity of a circular arc and it is the first realization of the new generation curves
mentioned in the paper. Tari-1 curve is a new curve joining a straight line with a circular arc by providing the
condition of second-degree contact. Tari-2 curve is a superior implementation of Baykal curve by providing the
condition of second-degree contact. In this paper, each of these curves has been examined by using the function
of lateral change of acceleration in motion model with constant velocity.

Keywords: Transition curve, lateral change of acceleration, vehicle road dynamics, railway curve, highway
curve motion model

1. Introduction ered, although some of them based their curves

. . . on the incorrect comparison criteria as shown in
In the past, using a circular curve simply solved detail by Baykal [11]. The first realistic curve
the problem of joining two straight lines on rail- in the application of the transition curves with

way or.highway alignmen?s. This simplicity had base of traditional lateral change of acceleration
been widely used before high speeds became nec- function is the sinusoidal curve [12]. The new

essary. Howe.ver, with 1ncre§sed speed require- lateral change of acceleration function derived in
ments .espec1ally on the railways, the 1m‘p1e— [11] has suggested changing the design criterion
mentations of the circular curve were examined and depending on these suggestions new transi-

[1-3]. Th.ege examinations resulte'd mn Fhe use of tion curves have proposed. The new generation
the transition curves between straight lines and a transition curves began with [13] and continued

circplar arc including circles wi.th a 2R radius and with [14-16] and [17]. These curves are generally
cu‘blc parabola [4]. Cqmputa‘monally Inore com- based on the basics of the function of the lat-
plicated curves (e.g. spiral cu‘rve) have bgen used eral change of acceleration presented in [11]. The
as a result of developments in calculation tech- Baykal curve given in [18] was a radical new tran-
niques [5]. The SPIr%ﬂ curve as a transition curve sition curve in the transition curve manner. The
is still the most'w1de1y used, becauS('e of wide Tar1-1 curve presented in [17] is another radical
knowledge base, infrastructure, the existence of example of the new transition curve family, espe-
ready to use software, and the traditional rules of cially by the reason of combining road elements
the responmb'le agencies. . with the second-degree contact. The Tari-1 curve

The nece.ssmy for the curves, which ha.ve much is a transition curve joining a straight line with
better vehicle-road dynamical properties, has a circular arc. Tt was proved to be a superior

. . th
arisen since the last quart.er of the 20 cer'ltury. alternative to curves such as Spiral, Bloss and
Curves such as the ones in [6-10], were discov-
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Figure 1. Horizontal geometry of curves with setting
out elements.

Sinuzoidal curves [15, 17].

In this study, 4 new generation transition
curves with lateral change of acceleration func-
tions are given briefly. The sinusoidal curve, the
Baykal curve, the Tari-1 curve, and the Tari-2
curve is then examined by means of lateral change
of acceleration function in motion model with
constant velocity. Each curve is explained with
a few words and basic equations.

2. Lateral Change of Acceleration (LCA)

The LCA is the most important criterion de-
termining the conformity of horizontal geome-
try of route related to the vehicle-road dynamics
[6, 11, 12, 15, 17, 18, 19]. Older derivations of
LCA functions [20-23] differ and are even incor-
rect in some cases [7, 9, 24, 25] as explained in
[11].

The LCA is the change of the resultant accel-
eration occurring along the curve normal with
respect to time. The resultant acceleration is
formed by the free forces acting on a vehicle with
a mass (m) and an instantaneous velocity (v),
moving on a curve orbit. The equation of LCA is
given as [11]

= d_aﬁ_ipv X
dT /u2+p2
dk  kv’u+gpdu
k L. s 1
{3 U T e dl} e

where z is the lateral change of acceleration
(LCA) [m/sec®], a is the resultant acceleration
formed by free forces [m/sec?], T is time [sec], v
is vehicle speed [m/sec], a; is tangential acceler-
ation produced by motor force [m/sec?], p is the
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Figure 2.

curves.

Horizontal geometry of the compound

horizontal width of the road platform [m], u is
the superelevation which is the amount of eleva-
tion of the outer side according to inner side[m],
k is curvature of orbiting curve path defined on
horizontal plane [1/m)], g is gravity constant [9.81
m/sec?], lis arc length measured from a chosen
point on the route (natural parameter)[m], n is
unit vector along the curve normal.

If three functions, v = v(l) = function of ve-
locity related to the road, k = k(1) = function of
curvature related to the road, v = u(l) = function
of superelevation related to the road, are known,
the function of LCA given by (1) can be derived
for any curve.

3. The New Generation Transition Curves

In order to calculate setting out elements of
curves mentioned in this paper, the relation-
ship between the local cartesian coordinates of
any point, x and y, and the angles, 7 and A
(Fig. 1) is required. The origin of local system
is at O; in Fig. 1 and axes are in the direction
of z and y as indicated in the figure. Details
of these calculations are given in [15] and over-
all equations for the calculations can be found
in [8, 26, 27]. The suggestion for the solution
method is to use a numerical integration tech-
nique and the technique is suggested as Romberg
Integration Method [8, 14, 28, 29, 30].

The new generation transition curves can be
divided in two groups. The first group contains
compound curves which are formed by straight
line - 1%t transition curve - circular arc - 2"¢ tran-
sition curve - straight line given in Fig. 2. The
characteristic points in the form of compound
curves are Oy, TO, TF, and Os. The radius of the
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Figure 3. The curvature and superelevation dia-
grams of the compound curves.

circular curve is R at the points of TO and TF
which are the points two elements join together.
These joining points as well as O1 and O2 are
essential points in the examination of LCA di-
agrams. The model diagrams of curvature and
superelevation functions of compound curves are
given in Fig. 3 where 4, is the maximum value
of the superelevation and k,,,, is the maximum
value of the curvature. The sinusoidal curve and
the Tari-1 curve reside in the first group.

The second group contains the curves join two
straight lines without a circular arc. Transition
curves joining two straight lines without a circular
arc are proposed by means of better properties
related to road-vehicle dynamics, starting with
[13]. These transition curves have a total length
of L and have a specific point M at which the
radius of curvature is R and the arc length of the
point M from the beginning of the curve is Iys
(Fig. 1 and Fig. 4). The characteristic points
in these types of curves are O1, M, and Os. The
model diagrams of curvature and superelevation
functions of this second group of curves are given
in Fig. 4. The Baykal curve and the Tar1-2 curve
belong to this second group.

3.1. Sinusoidal Curve

Sinusoidal curve joins a straight line with a cir-
cular arc by providing the second degree contact
[12]. The curvature function of the sinusoidal
curve is derived from sinus function as

1 /1 1 . l
ks(l) = }—2 (Z — % Sln(27i'z)> (2)
By applying the boundary conditions
I=0=k=0and k' =0 (3)
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Figure 4. The curvature and superelevation dia-
grams of the continuous curves.

l=L;j=k=1/Rand k' =0 (4)
The curvature function of the first sinusoidal
curve in the form of compound curve is obtained
as

ksa(l) = % (Lil - % sin(LLlQW)) ,

0<I< Ly (5)
The curvature function of the circular arc is
ks2(l) = % = constant, Ly <I<Li+Ly (6)
With the boundary conditions as
l=Li+Ly=>k=1/Rand k' =0 (7
l=Li+Lo+Ls=k=0and k' =0 (8)

The curvature function of the second sinusoidal
curve is

ko) = 3 ((LL; DL (2= 27r)) ,

Li+ Ly <I<L

The superelevation functions can be obtained by
taking into account of similar boundary condi-
tions for curvature functions

l 1 . 1
us,1 (1) Umaz (L_1 ~ 5 sm(L—127r)> ,

0<1< Iy
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Us,2(l) = Umqz = constant, L1 <1 < Li+Ls (11)

us3(1) = Umaz ((LL;” — sin(%%r)) ,
Li+L,<I<L (12)

3.1.1. LCA Function of Sinusoidal Curve
in Motion Model with Constant Ve-
locity

In the motion model with constant velocity, ve-
locity (v) is assumed to be constant (a; = 0) along
the transition curve in Eq. 1. The LCA function
of the first sinusoidal curve part in the compound
curve can be obtained by using Eq. 5, Eq. 10 and

their derivatives with respect to lin Eq. 1.

N, 1v(v? — gRtan ay,)

5,1(T = b )
2s1(?) R(1+ Q2 tan® a,,)3/2
Ly
0<t< — 13
<i<h (13)
where
t=1/L (14)
Lt 1 Lt
= _sin(=2
Qs I, on sm(L1 ),
1 1 L
Nyi= — — — cos(—2 1
1= cos(L1 ) (15)

The LCA function of the circular arc is obtained
by using Eq. 14, Eq. 6, and Eq. 11 in Eq. 1
L, Li+ Ly

— <t<
L — — L

The LCA function of the second sinusoidal part
is derived by using Eq. 14, Eq. 9, and Eq. 12
with derivatives with respect to lin Eq. 1 as

ZS,Q(t) = 0, (16)

N ov(v? — gRtan auy)

t) = - ,
#(0) R(1+ Q2 , tan® )3/
Li+ L
b PP (17)
where
L—- 1Lt 1 . (L-1Lt
QRs2 = I, 2n sm( I 27r) ,
1 1 L—- Lt
N, = —— 4+ — 2 1
= —p s (2 e) )

The extensive derivations of the equations about
the sinusoidal curve and LCA functions of the
sinusoidal curve can be found in [15].
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3.2. Baykal Curve

The Baykal curve joins the two straight lines
with a single curve. The arc length of the point
M from the beginning of the curve is [,, = 0.558L
(Fig. 1 and Fig. 4). The curvature and superele-
vation functions of the Baykal curve are

1
kg(t) = R(A3t5+BBt4+DBt2)
up(t) = Umaez(Apt’ + Bpt* + Dpt?) (19)
where t=I[/L, Ap =15.538, Bp =23.307 and

Dy =7.769 [18].

3.2.1. LCA Function of Baykal Curve in
Motion Model with Constant Veloc-
ity

The LCA function of the Baykal curve in mo-
tion model with constant velocity is derived from

Eq. 1 by taking into consideration Eq. 19 as
follows:
vN(v? — gRtan a,,)

t) = 0<t<1(20
2s(t) LR(Q?tan® a,, +1)3/27 "= "~ (20)
where

Umaz
tana,, = 5
Q = At + Bt' + Dt
N = 5At* +4Bt® + 2Dt (21)

The extensive derivations of the equations about
the Baykal curve and LCA functions of the Baykal
curve can be found in [18].

3.3. Tari-1 Curve

Tar1-1 curve joins a straight line with a circu-
lar arc. The curve provides condition of second
degree contact to joining elements, related to the
properties of road dynamics [12, 15]. The curva-
ture function of the Tari-1 curve is suggested to
be a function of fifth degree parabola.
k() =al® +bl* +cl® +dI* +el + f (22)
The curvature function of the first Tari-1 curve
is suggested to provide the boundary conditions
given below

0=k=0,k =0, ¥ =0,

Li=k=1/R, kK =0,k" =0 (23)
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With these assumptions, curvature function of
first Tar1-1 curve in the form of compund curve is
obtained as [15]

+ m) ,

2 ( 612

RL3 \ L2
0<I< Iy

The curvature function of the circular arc with a

radius R is

151
kr1,1(0) .

(24)

1
kr12(l) = = = constant, L1 <1 < Ly + L,

7 (25)

The curvature function of the second Tari-1 curve
in the form of compound curve satisfies the con-
ditions given below,

| = Li+L,=k=1/R K =0,k"=0, (26)
Il = Li+Ly+L3=L=k=0,k'=0,k"=0
and

13
kr1,3(l) = (%Llé)

L1+L2SZSL1+L2+L3:L

6(L—1)*  15(L-0)

(™ — 5 +10),
(27)
is obtained. Similarly, the superelevation func-

tions of the Tari-1 compound curve can be ob-
tained as

) = 2 (G = e w).
0<I<I4 (28)
’U/Tl,z (l) = Umaz = CO’I’LStant,
Li <I<Li+ L, (29)
Umuw(L - l)3
uT1,3(l) = T
6(L-1° 15L-1)
- 1
( L% L3 + 0 5
Li+ Ly <I<Li+Ly+L3s=1L (30)
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3.3.1. LCA Function of Tari-1 Curve in
Motion Model with Constant Veloc-
ity

For the first Tar1-1 curve part, introducing Eq.

24, Eq. 28 and derivatives of them into Eq. 1

Nri1v(v? — gRtan ay,)

t) =
a1 (f) R(1 + QFy; tan® am)3/2’
Ly
<t < — 1
0<t<— (31)
where
6L5t> 15L%* 10L3#
QTl,l L5 - L4 L3 )
1 1 1
30L4*  60L3t3  30L2t?
Nriqp = — (32)
Ly L Li
can be derived.
For the circular arc, introducing Eq. 25,
Eq. 29 and derivatives of them into Eq. 1
L, L+ L,
= — <t<
271,2(t) =0, 7 S t< i7 (33)
can be derived.
For the second Tari-1 curve introducing

Eq. 27, Eq. 30 and derivatives of them into
Eq. 1

Nrp1,2v(v? — gRtan a,,)

t = )
er1(t) R(1+ Q% , tan® oy, )?/2
Litle 4oy (34)
where
0 6(L — Lt)®> 15(L— Lt)*
T1,2 = -
L3 Lg
10(L — Lt)3
L3 ’
N 30(L — Lt)*  60(L — Lt)?
T1,2 = - -
L3 Ly
30(L — Lt)?
2 (35)
3

can be derived. The extensive derivations of the
equations about the Tari1-1 curve and LCA func-
tions of the Tari-1 curve can be found in [15] and
[17].
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3.4. Tari-2 Curve

The geometrical representation of Tari-2 curve
is similar to Baykal curve, differing only by the
1,,220.428L. The most distinct difference between
the Tar1-2 curve and Baykal curve is that Tari-
2 curve has the capability of providing second-
degree contact with the joining elements, which
are straight lines. This capability gives curves
superiority for use in road-vehicle dynamics, as
shown in [12].

The curvature function of Tari-2 curve is of-
fered as a function of a seventh degree parabola
to provide the boundary conditions given as fol-
lows (Fig. 2):

I = 0=>k=0,K=0,k"=0,
| = l,=>k=1/RK =0,
I = L=k=0k=0k"=0 (36)

The final form of the curvature function is ob-
tained as [15]

823543
kra(t) = O3 (t7 — 45 + 6t° — 4t + 13),
0<t<1 (37)

By taking into account similar boundary condi-
tions with the function of curvature, the function
of superelevation can be obtained as

823543umax

6912
0<t<1

ur2(t) =

3.4.1. LCA Function of Tari-2 Curve in
Motion Model with Constant Veloc-
ity

By taking into consideration of Eq. 37, Eq. 38
and derivatives into Eq. 1, the LCA function of

Tar1-2 curve is obtained as

Nrov(v? — gRtan auy,)

t - ’
ZT2( ) LR(]. + Q%2 tan2 am)3/2
0<t<1 (39)
where
823543, 6 5 4,3
- t7 — 418 + 6¢° — 4t* + ¢3),
Qs o2 " + +1°)
823543
Nr: = 512
(7¢% — 24¢5 + 30t* — 16> + 3t?)  (40)

(7 — 418 4 615 — 4t* + 1°),
(38)
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The extensive derivations of the equations about
the Tari-2 curve and LCA functions of the Tari-2
curve can be found in [15].

4. Comparison of the Curves on the Base
of LCA

Curves are compared by taking into account
LCA functions in motion model with constant ve-
locity. Three criteria are used to make decisions
about the curves [15, 17].

4.1. Criterion 1

The continuity of the LCA function is the most
important criterion in comparisons of transition
curves, because discontinuities in the form of
jumps [7, 9, 12] affect travel comfort on railways
and highways, and change the geometry of the
rails, and more importantly cause wear on wheels
and rails in railways [13, 15, 16, 17, 18].

Any curve, which does not have any discontinu-
ity in the form of jumps in the diagram of LCA,
is considered superior to other curves which have
discontinuities [9, 12, 13, 15, 18]. Discontinuities
in the form of jumps occur at the points where
route elements with different geometry are joined.
If two values of LCA functions belonging to dif-
ferent transition elements are identical, there is
no discontinuity at the points. If these values are
different, there is a discontinuity in the form of
jump and it is given as
Az(ty) = 2;(tp) — zi(tp) (41)
where z;(tp) and z;(t,) are the values of LCA
function belonging to the ith and jth route ele-
ment at the joining point p whose arc length is
L, (tp,=Ip/L) [15, 17].

LCA function of curves as well as the spiral
curve for motion model with constant velocity are
illustrated in Fig. 5 by taking into account the
following magnitudes as constant: Minimum ra-
dius of curvature at point M is R=1850m, the
lengths of curves are L=1800m, L.; =L,=L3=600
m, maximum superelevation is U;,4,=0.15m, hor-
izontal width of the road platform (railways) is
p=L1.5m and constant velocity is =250 km/h. As
seen in Fig. 5, none of the curves, except the spi-
ral curve, has any discontinuities in the form of
jumps on the diagrams of LCA function. There-
fore, the Sinusoidal curve, Baykal curve, the Tari-
1 curve, and the Tar1-2 curve are equivalent ac-
cording to criterion 1. However, the spiral curve
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Figure 5. LCA diagram of the curve in motion model
with constant velocity.

has discontinuities in the form of jump. There-
fore, the spiral curve will not be evaluated for
criterion 2 and criterion 3.

4.2. Criterion 2

If the curves compared are found equivalent re-
garding criterion 1, then criterion 2 can be used.
In order to use criterion 2, the extreme value
of the function of LCA, z. (the largest abso-
lute value), is compared to a boundary value, zp.
Whichever transition curve satisfies the condition
of
Ze < 2p (42)
then the curve is assumed as superior to the curve
which does not satisfy the condition of Eq. 42.
Curves satisfying the condition of Eq. 42 are as-
sumed equivalent to each other [18].

The LCA values greater than 0.3 m/sec® are
felt by humans, and the value of 0.6 m/sec® is
given as the limiting point at which the humans
begin to feel discomfort [20, 21, 22, 31, 32, 33]. A
classification can be made by taking into account
the above boundary values for z, in Eq. 42 as

Ze < 0.3m/.s:3
0.3m/s® < 2z, <0.6m/s®
ze > 0.6m/s® (43)

As seen in Fig. 5, Baykal and Tari-2 curves
take place in the 1°¢ group in Eq. 43, therefore,
they are equivalent according to the criterion 2.
However, Tari-1 curve and Sinusoidal curve are
inferior curves in motion model with constant ve-
locity according to criterion 2 and therefore will
not be taken into consideration in criterion 3.
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Figure 6. Diagram of the change of LCA in motion
model with constant velocity.

4.3. Criterion 3

The discontinuity in the form of break is de-
fined as “the difference between the slope val-
ues of the two tangents on the diagram of LCA
at the points where different route elements
join ”[15, 17]. The discontinuities in the form of
break affect the travelling comfort and cause ir-
regular change of LCA, although not as much as
those in the form of jump. Discontinuities in the
form of break take place at the points on which
two different route elements join. The dynamics
of the movement along the trajectory is changed
by other effects such as velocity and acceleration
changes. The condition for having no disconti-
nuity in the form of break for ith and jth route
elements is

(44)

where z'(t,) is simply derivative of the LCA func-
tion at the point P.

If the values for the two joining route elements
are different, then a discontinuity in the form of
break takes place and the magnitude of the dis-
continuity is given as [15]

(45)

The diagram of z' is shown in Fig. 6. The
discontinuity values show that the Tari-2 curve is
superior to Baykal curve in motion model with
constant velocity according to the criterion 3, be-
cause there is no discontinuity for the Tari-2 curve
although it exists for the Baykal curve.
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5. Conclusion

The four new generation transition curves
named as the sinusoidal curve, the Baykal curve,
the Tari-1 curve and the Tari-2 curve are pre-
sented briefly. The sinusoidal curve and Tari-1
curve have the ability of joining a straight line
with a circular arc, whereas the Baykal curve
and Tari1-2 curve have the ability of joining two
straight lines without the need of a circular arc.
All of the curves presented in this paper provide
high order requirements of road vehicle dynamics
as defined by the lateral change of acceleration
function.

The LCA functions of each curve are given in
motion model with constant velocity. By tak-
ing into consideration of LCA functions and the
change of LCA, three criteria are defined to com-
pare curves. The diagrams of LCA and the
change of LCA for curves are plotted to make
criticism by using the criteria. According to
the criterion 1, all curves are determined equiva-
lent. Sinusoidal curve and Tari-1 curve are infe-
rior curves with the criterion 2 and these curves
are not justified for criterion 3. The Tari-2 curve
is concluded as the superior curve to the Baykal
curve on the base of vehicle road dynamics de-
fined by LCA.
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