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Critical Problem for an Infinite Cylinder with Forward Scattering
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(Received 21 October 2004)

The transport of monoenergetic neutrons in a bare homogeneous cylinder is studied. The transport equation is
solved using FN method considering the pseudo-problem. Numerical values for the critical radius are obtained
and tabulated for various c values. Numerical results indicate that the critical radius varies non-monotonically
with forward scattering. Some selected illustrative results are compared with those already available in the
literature. It is also shown that the FN method, though approximate, yields results accurate to at least three
or four significant figures for the problem considered.
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1. Introduction

The transport of monoenergetic neutrons in
spheres, infinite slab and cylinders has been the
subject of many studies. The critical problems
for isotropic scattering have been obtained by
using various methods in different geometries
[1-12]. Some of the work included anisotropic
scattering [4-6,8]. The problem of anisotropy in
the interactions of neutrons with matter and
of its effect on the critical size is one of the
most important problems of neutron transport
theory. When anisotropy is taken into account,
some new problems occur in transforming the
transport equation into more conventional one.
A large variety of numerical methods have
been developed which appear quite different,
and based on a few approximation techniques,
such as a finite differences for differential opera-
tors, quadrature formulas for integral operators,
or surface-integral equation methods as the com-
plementary method [3] and the facile method
[13-18].

In more recent works, Thomas et al. [18],
and Siewert et al. [13] have reported FN solu-
tions to one-speed problems in cylindrical geom-
etry for isotropic scattering. The FN solution
was found to be accurate to 5 or 6 signifi-
cant figures for all cases. In the other works
the integral transform method [2] has been
extended to the treatment of one-dimensional
homogeneous media with linearly anisotropic
scattering. Their accuracy is very high, some-

times 12 significant digits are given. Also some
numerical results for fundamental and higher
eigenvalues have been obtained by Sjöstrand [9]
using the formalizm of Sanchez and Ganapol [4].

In this paper, first we make the change
of variables [19], then use the transformation
idea developed by Mitsis [20], the elementary
solutions of Case [21], and the FN method [13-
18,22] to solve the cylindrical critical problem.
The two types of results will be presented.
The first category shows the applicability of
the proposed method as applied to the cal-
culation of the criticality eigenvalues. The
second concerns the investigation of the varia-
tion of the radius with forward scattering. For
this purpose we fix the criticality factor c and
α and determine the critical radius by simple it-
erative techniques. Furthermore, a comparison
is also made with published results [2-6,11,12].

2. The Statement of the Problem

The starting stationary transport equation
for neutrons of one speed and the angular flux
Φ(ρ,Ω) can be written [1,18,21]

[
~Ω · ~∇+ Σt

]
Φ(ρ,Ω) =

= cΣt

∫

Ω

f(Ω′ → Ω)Φ(ρ,Ω′)dΩ′ (1a)

where

~Ω · ~∇ = sin θ

(
cosφ

∂

∂ρ
− sinφ

ρ

∂

∂φ

)
. (1b)
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f(Ω′ → Ω) is the scattering function, i.e, the
probability that a neutron with direction Ω′ be-
fore a collision has the direction Ω after the col-
lision, and normalized to unity. For the pro-
posed problem, the scattering function is given
by [5,6,19,23-25]

f(Ω′ → Ω) =
1− α

4π
+ αδ(Ω′ − Ω) . (2)

Introducing the scattering function given by
Eq. 2 into Eq. 1, the transport equation for a
circular cylinder of radius ρ and infinite hight can
be written as [1,3,8,18,20]

sin θ

(
cosφ

∂

∂r
− sinφ

r

∂

∂φ

)
Ψ(r, θ, φ) + Ψ(r, θ, φ)

=
c′

4π

∫
Ψ(r, θ, φ) sin θdθdφ (3)

where the modified scattering parameters are
[6,19]:

ρΣt → ρ (4a)

with (1− cα)ρ = R (4b)

c′ =
c(1− α)

1− αc (4c)

and

Φ(ρ,Ω) = Ψ(r,Ω) . (5)

In writing Eq. 3, we have used standard neutronic
notation, consistent with recent publications in
the literature [19,24]. As already mentioned in
the introduction the problem under investigation
can be solved by considering the pseudo-problem
[20,21,26]. Then, the integral equation for the
neutron flux distribution Ψ can be written as [20],

Ψ(r) = c′
∫ 1

0

[
K0(r/µ)

∫ r

0

tΦ(t)I0(t/µ)dt+

+I0(r/µ)

∫ R

r

tΦ(t)K0(t/µ)dt

]
dµ

µ2
(6)

where I0(r/µ) and K0(r/µ) denote the modified
Bessel Functions. Proceeding to derive a Pseudo-
problem we can solve to obtain Φ(r), following
Mitsis [20]; we let

Φ(r, µ) = c′
[
K0(r/µ)

∫ r

0

tΦ(t)I0(t/µ)dt+

+I0(r/µ)

∫ R

r

tΦ(t)K0(t/µ)dt

]
(7)

so that

Φ(r) =

∫ 1

0

Φ(r/µ)
dµ

µ2
. (8)

Eq. 8 suggests that Φ(r, µ) can be interpreted
as a pseudo neutron distribution taking the place
of Ψ(r, θ,Φ). Differentiating Eq. 7, we find that
Φ(r, µ) for µ ∈ [0, 1] and r ∈ [0, R] satisfies

[
∂2

∂r2
+

1

r

∂

∂r
− 1

µ

]
Φ(r, µ) = −c′

∫ 1

0

Φ(r, µ′)
dµ′

µ′2

(9)

We can also deduce from Eq. 7 the boundary
condition, for µ ∈ [0, 1]

K1(R/µ)Φ(R, µ)+

+µK0(R/µ)
∂

∂r
Φ(r, µ)

∣∣∣∣
r=R

= 0 . (10)

We can also express the solution of the Eq. 9 as

Ψ(r, µ) = µ2 {A(ν′0) [Φ(ν′0, µ) + Φ(−ν′0, µ)]×

×I0(r/ν′0) +

∫ 1

0

A(ν′) [Φ(ν′, µ) + Φ(−ν′, µ)]×

× I0(r/ν′)dν} , (11)

where A(ν0) and A(ν) are expansion coefficients
to be determined from the boundary conditions
and Φ(±ξ, µ), ξ ∈ P = ν′0 ∪ [0, 1] with

ν′0 = (1− αc)ν0 (12a)
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Table 1
The critical radius ρ in mean-free-paths for isotropic scattering and comparison with published values

c Present work Ref.[4] Ref.[2] Ref.[12] Ref.[3] Ref.[11] Ref.[24]
1.01 13.12552 13.1255155 13.12550
1.02 9.043252 9.04458 9.0494 9.0433
1.05 5.411283 5.41152 5.4140 5.4118
1.10 3.577384 3.5773913 3.57744 3.5795 3.577383 3.5783
1.2 2.287993 2.28724 2.2891 2.287201 2.2884
1.3 1.725063 1.7250029 1.725006
1.4 1.397116 1.39699 1.3991 1.396979 1.3973
1.5 1.178365 1.178340 1.178342
1.6 1.020883 1.02085 1.0231 1.020840 1.0209
1.7 0.901406 0.901396
1.8 0.807497 0.80743 0.8097 0.807428 1.8067
1.9 0.731446 0.731430
2 0.668618 0.6686129 0.66862 0.6709 0.668614 0.6673

2.3 0.53183 0.531179
2.5 0.46793 0.467924

2.39318 0.50000 0.500
3.94239 0.25000 0.250
5.98205 0.15000 0.150
8.50732 0.10000 0.100
16.0109 0.05019 0.050
30.901 0.02446 0.025

Φ(±ν′, µ) =
c′

2
ν′Pv

(
1

ν′ ∓ µ

)

+
(
1− c′ν′ tanh−1ν′

)
∂(ν′∓ µ) (12b)

and

Φ(±ν′0, µ) =
c′

2
ν′0

(
1

ν′0 ∓ µ

)
(12c)

are the familiar (generalized) functions appropri-
ate to one-speed neutron tranport theory in plane
geometry problems. Here the discrete eigenvalues
±ν′0 are the positive solutions of

c′ν′0 tanh−1 (1/ν′0)− 1 = 0 . (13)

3. The FN Solution

Having established the solution of Eq. 9, we
note at this point that a discussion of the basic
aspects of the FN method has been reported in
Ref. [13,18,19] where the approach is the same
as used in previous works [13,18,19]. Since the

fundamentals of the method and its development
are so well-known, our presentation here is brief.
Then following the procedure of Ref.[18,24] we
derive a system of singular integral equations and
constraints for unknown angular fluxes in more
direct way, by using the completeness and full-
range orthogonality properties of the generalized
functions Φ(ξ, µ):

∫ 1

0

[Φ(ξ, µ)− Φ(−ξ, µ)] {µ+ ξB1(R/µ)B(R/ξ)}

×Ψ(R, µ)
dµ

µ
= 0 , (14)

where

B1(R/µ) =
K1(R/µ)

K0(R/µ)
(15a)

and

B(R/ξ) =
I0(R/ξ)

I1(R/ξ)
. (15b)

We now introduce the approximation
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Table 2
The critical radius ρ in mean-free-paths for various degree of forward scattering and comparison with published
values

α c=1.1 α c=1.2 α c=2 Ref.[6] Ref.[5]
c=1.1 c=1.1

0.1 3.738303 0.1 1.792517 0.05 0.67825
0.2 3.924484 0.2 1.86909 0.1 0.68826
0.3 4.143486 0.3 1.95666 0.15 0.69845
0.4 4.406905 0.4 2.05844 0.2 0.70886
0.5 4.730989 0.5 2.17766 0.3 0.7297
0.6 5.146192 0.6 2.3167 0.4 0.7476
0.7 5.70383 0.7 2.4643 0.45 0.7484
0.7614 6.15677 0.75 2.482 6.1568
0.8438 6.9658 0.76 2.50 6.9612 6.9659
0.8846 7.4200 7.4168 7.4201
0.8970 7.5080 7.5045 7.5073
0.8994 7.5041 7.5099 7.5126
0.9018 7.5081 7.5078 7.5103
0.9042 7.4950 7.4946 7.4971
0.9079 7.4611 7.4316 7.4338

Ψ(R/µ) = µ2
N∑

k=0

akµ
k (16)

into Eq. 14 to obtain, for ξ ∈ P , a system of
linear algebraic equations:

N∑

k=0

ak [Ek(ξβ) +B(R/ξβ)D(ξβ)] = 0 (17)

where

Ek(ξ) =
1

ξ

∫ 1

0

µk+1 [Φ(ξ, µ)− Φ(−ξ, µ)] dµ (18a)

and

Dk(ξ) =

∫ 1

0

µk [Φ(ξ, µ)− Φ(−ξ, µ)]B1(R/µ)dµ

(18b)

are the functions discussed previously in
Ref.[13,18 ]. Subsequently, we consider Eq. 17 at
a set of collocation points ξ = ξβ ,

ξβ =
1

2
+

1

2
cos

(
2β − 1

2N
π

)
, β = 1, 2, ..., N . (19)

Thus, to find the critical radius R [or
c = (αc′ − α + 1)−1c′] we must solve the system
of linear algebraic equations.

4. Numerical Results and Discussion

Eq. 17 gives the well-known eigenvalue prob-
lem for one-speed neutrons. It can be solved in
a number of ways. Here, we have computed the
critical radius R by the ordinary iterative proce-
dure (Sécant method). For this purpose, for given
values of c and α we first compute the value of R.
We than obtain the critical radius of the original
problem from Eq. 4.

A computer program has been developed in
C++ to perform this calculation. The results cal-
culated in F1 − F12 approximations are given in
Tables 1 and 2.

In Table 1 we compare our values for the
isotropic results with other works for the different
c values. The results agree within three or four
digits with those calculated by different meth-
ods. Again we see that the result of Ref. [24]
shows good agreement with our values. Clearly
the method works equally well for large and small
dimensions.

Table 2 shows the variation of the critical ra-
dius as a function of α. We see from Table 2 that
the critical radius first increases with increasing
anisotropy parameter α, but than decreases as α
approaches 1/c. This means that the leakage
is prevented by the forward anisotropy. Also,
Table 2 contains the variational results of Pom-
raning [5] and Tezcan [6] for the value of c=1.1.
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The agreement with our F12 = result is satifac-
tory. For α → 1/c, this procedure appears to be
adequate for our present purpose.

5. Conclusions

As pointed out before [5,6] we observe from
the results that the critical radius varies non-
monotonically with anisotropy. That is, the for-
ward scattering has an influence upon the critical
radius.

Finally we note that, the FN approximation
consistently yields results accurate to three or
four significant figures for the present considera-
tion. It is a flexible and economical tool for solv-
ing transport problems in several fields. This fact
makes the method of great practical interest.

6. Nomenclature

c = the smallest mean number of secondaries
per collision for criticality

r = the distance measured in mean-free path
units (mfp), from the axis of the cylinder.

θ = the angle between the z direction and unit
vector Ω along the direction the of
neutron.

φ = the angle between r and the projection of
Ω on the xy plane.

α = real constant in the range of 0 < α < 1
and gives the fraction of particles which
emerge from a collision in the forward
direction.

Ω′ = denotes the direction of the neutron
velocity vector (and Ω after collision)
and Ω′ = cos θ = µ.

Σt = the total cross-section in the critical
system.
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[9] N. G. Sjöstrand, Chalmers University of

Technology, CTH-RF-58, November, Göteborg
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