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Modelling the Hysteresis Curves of Ferromagnetic Amorphous Wires
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We present a model to examine the influence of various pinning regions on the magnetic hysteresis of a fer-
romagnetic amorphous wire by revealing the correlation between its magnetic hysteresis and pinning region
configuration. Magnetization is performed with the motion of 180-degrees domain walls. Domain configuration
in every stage of magnetization is traced by analyzing the total energy of domain-domain, domain wall-domain,
domain wall-pinning center, and external magnetic field interactions. The predicted hysteresis loops obtained are
found to be in good agreement with the experimental ones in literature.
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1. Introduction

Amorphous wires have been a topic of ongo-
ing interest for more than a decade due to their
outstanding magnetic properties and possible ap-
plications, such as sensors and transducers [1-
4]. As a characteristic behavior, they have two
stable remanence states between which the mag-
netic reversal occurs through a large Barkhausen
jump [5] when the wire is long enough [6,7]. Fe-
based amorphous wires consist of two main re-
gions; cylindrical inner core, and a shell magne-
tized radially or circumferentially external to the
core. In the literature, most works have consid-
ered the magnetic reversal in such wires as reverse
domain nucleation which occurs in the cylindrical
core [6-8].
The anisotropy distribution in such wires is a con-
sequence of the method of preparation. The very
rapid cooling rates that are necessary to retain
the amorphous state produce thermally induced
stresses and hence associated magnetoelastic in-
teractions, which manifest themselves as a mag-
netic anisotropy. Additional uniaxial anisotropy
can be induced by thermomagnetic or mechani-
cal treatment. When a ferromagnetic material is
deformed, a magnetic anisotropy is induced in a
direction which depends on geometry of the defor-
mation [9]. In literature, some works considered
the magnetization in bistable amorphous wires
as directionally alternating wall propagation [5-
7,10]. We report a model to examine the influence
of various pinning regions on the magnetic hys-
teresis of a ferromagnetic amorphous wire by re-
vealing the correlation between its magnetic hys-

teresis and pinning region configuration.
The wire is assumed to be consisting of axially
oriented cylinders (Fig. 1). The cylinders are ax-
ially magnetized with radius-independent mag-
netic charges on both ends. Each of them in-
teracts with others, external field, and the local
fields representing the pinning region. The ef-
fect of closure domains is represented by a pair
of mutually directed magnetic fields at each end.
In addition to the closure domains, two kinds of
pinning regions are employed. One of them is
uniaxial anisotropy which can arise from press-

Figure 1. Schematic of the wire divided into small
cylinders
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ing the wire perpendicular to its axis, while the
other is unidirectional anisotropy arising from lo-
cal thermomagnetic treatment of the wire. While
the former of these is modelled as a pair of mag-
netic fields directing toward the ends, the latter
is implemented through a field biasing in one di-
rection of the wire.
The pinning sites can resist against domain wall
motion. While the magnetic moments in these
regions may energetically favor the anisotropy
field directions, after completing magnetic rever-
sal, they contribute to the magnetization with
small angle rotation. This well known mecha-
nism is important in highly anisotropic magnetic
materials and is not considered in this study.
Magnetization is performed with 180-degrees do-
main wall (separating two oppositely magnetized
domains) motion. Domain wall undergoes a
Barkhausen jump when the total energy looses
its minimum. This jump causes a sudden change
in magnetic flux through the wire resulting in
electromotive force induced across a pick up coil.
These voltage spikes produced in each magnetic
reversal are known as Barkhausen noise [11]. In
AC magnetization, Barkhausen noise is produced
at the applied field frequency. In this study we
consider DC magnetization and thus do not focus
on Barkhausen noise.
Since in general there are more than one energy
minima along the wire, a magnetic hysteresis is
observed.

2. Calculation details

The total interaction energy among the cylinders
is,

Em =
n−1∑

i=1

n∑

j=i+1

Uij (1)

where n is the number of cylinders, Uij is mutual
interaction energy between ith and jth cylinders.
The magnetostatic potential at the point (R, z) in
cylindrical coordinates due to a disc of magnetic
charge density mi and radius r is given by [12],

ϕ =
mir

2

∫ ∞

0

J1(xr)J0(xR)e−xzx−1dx (2)

with Jn(x) is the first kind Bessel function of nth
order. The interaction energy of the two coaxial
discs is;

W (z) = πmimjr
2

∫ ∞

0

J2
1 (xr)e−xzx−2dx. (3)

Where z is the distance between the two discs.
Using W (z), in Eq.3, Uij can be formulated as

Uij = 2Wij(l + S)−Wij(2l + S)−Wij(S), (4)

where l is the cylinder length, and S is the dis-
tance between the closest ends of the two adja-
cent cylinders. The distance between the cylin-
ders numbered i and j (with j > i) is taken as

S = (j − i)s+ (j − i− 1)l. (5)

The total energy can be written as;

E(x) = Em(x)−HM(x) +Ey(x). (6)

Here H is the external field, M(x) is magneti-
zation of the wire, Ey(x) is the interaction en-
ergy between wire and the pinning regions, and
is given by

Ey(x) = −
∑

miHi (7)

Here mi and Hi denote magnetic moments of
pinned parts of the wire and magnetic fields cre-
ated by the pinning regions respectively, and x is
the distance between the wall and an arbitrary
end. M(x) is the sum of magnetization of indi-
vidual cylinders and taken as

M(x) =

n∑

i=1

mi(x). (8)

We include x as an argument because dipole mo-
ments of the cylinders and hence the total energy
depend on x . Reduced energy is taken as;

e(x) = rE(x)/M2
s , (9)

where Ms is the saturation magnetization. Re-
duced magnetic field and reduced magnetization
are taken as

h = rH/Ms

µ(x) = M(x)/Ms (10)
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Figure 2. Magnetic hysteresis of the amorphous wire
with pinning centers at ends because of boundary ef-
fects

respectively, so that,

e(x) = em(x)− hµ(x) + ey(x) (11)

or explicitly,

e(x) = r

n−1∑

i=1

n∑

j=i+1

Uij/M
2
s − rHM(x)/M2

s

− r
∑

miHi/M
2
s (12)

3. Results and Discussion

In Fig. 2, we present the magnetic hysteresis loop
for the case of no pinning region except for the
ones representing the closure domains at ends. In
both directions, the fine structure is observed be-
fore the Barkhausen jumps. From energy point of
view, the pinnings of the wall at the ends before
reverse magnetization are due to the minima at
the ends in the energy vs. x curve. At sufficiently
strong external field, domain wall overcomes the
energy barrier and undergoes a large Barkhausen
jump. This is what happens when h exceeds some
critical value namely coercivity (hc). As h ap-
proaches hc, the energy minimum continuously

Figure 3. Broadening of the magnetic hysteresis by
virtue of the strengthening the pinning centers at the
ends.

gets shallower and displaces with small steps re-
sulting in the fine structure. At h = hc , the
energy barrier turns to an inflection, and the wall
is released to perform an irreversible jump.
In Fig. 3, the broadening of the hysteresis curves
for increasing hy are seen. Energy minima at the
ends deepen and hence coercivity (hc) increases as
a result of strengthening of pinning centers here.
Depinning of the wall occurs gradually at the
end where the motion begins because of the en-
ergy minimum. Then reverse magnetization pro-
cess shows a sudden complete instead of stairwise
change at the terminal end. This sudden occur-
rence is due to the fact that, the energy mini-
mum at the terminal end disappears when the
energy required to overcome the minimum at the
starting end is provided by the external magnetic
field. This statement is reinforced by the domain
wall velocity measurements with two pick up coils
[5,9]. For three values of distance (s) between the
adjacent cylinders, coercivity versus pinning field
(hy) curves are seen in Fig. 4. These figures con-
sist of three pairs of intersecting straight lines.
The hy values at which intersection occurs, de-
creases with increasing s.
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Figure 4. Coercivity versus pinning field graphics
for three values of distance (s) between the adjacent
cylinders.

Figure 5. Magnetic hysteresis loops for increasing
strength of unidirectional pinning center at midsec-
tion of the wire.

Figure 6. Magnetic hysteresis in the case of unidirec-
tional anisotropy at the middle of the wire for three
values of strength for a certain value of hy, strength
of pinning at the ends.

Magnetic hysteresis loops for increasing strength
of unidirectional pinning region at midsection of
the wire are shown in Fig. 5. Unidirectional pin-
ning causes a unidirectional energy barrier that
makes it difficult for domain wall to propagate
freely in the opposite direction to this bias. The
energy required to overcome the barrier causes
the horizontal line seen in descending part of the
loops.
The relation between coercivities seen in the de-
scending portions of the curves implies a pro-
portionality beyond a threshold between biasing
anisotropy field hb and coercivity. Lengths of hor-
izontal lines increase with hb.
In the case of uniaxial pinning region in the mid-
section of the wire, hysteresis loops for its three
different values of strength, are seen in Fig. 6.
Since unidirectional anisotropy is represented by
a combination of biasing fields having opposite
signs within two halves of the wire, upper and
lower halves of hysteresis loops are shifted sym-
metrically with respect to µ axes. The domain
wall is pinned both at the ends and at the cen-
ter of the wire and this leads to two stage-large
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Figure 7. The vanishing of horizontal line in the
hysteresis as the distance of adjacent cylinders (s)
decreases and consequently total interaction energy
among the cylinders increases.

Barkhausen jumps in both directions. When the
wall reaches the location of the unidirectional
anisotropy, it is exposed to the opposite biasing
field. Being opposite to the direction of the wall,
biasing field impedes depinning and increases the
depinning field. This effect can also be explained
in the context of energy. The local anisotropy
creates an energy barrier. The wall is pinned un-
til extra energy from the external field suffices
to overcome this barrier. In the case of uniaxial
anisotropy, the same mechanism as the unidirec-
tional anisotropy is employed in both directions
of the wire. Again coercivity is found to be pro-
portional to the magnitude of anisotropy field hb
beyond a threshold.
Hysteresis loops for various values of s, the dis-
tance between the closest ends of adjacent cylin-
ders, are seen in Fig. 7. An increase in to-
tal interaction energy among cylinders leads to
an impedance against reverse magnetization, and
this results in an increase in coercivity. Since the
magnitude of pinning in the middle of the wire is
kept constant during the entire process, the de-
pinning energy decreases with s. At a certain

Figure 8. For hy = 10 and various values of s, curves
of coercivity versus strength of biasing fields hb in the
middle.

value of s, depinning energy vanishes.
For hy = 10 and various values of s, curves of
coercivity versus strength of biasing fields hb in
the middle are seen in Fig. 8. These curves can
be used to explain the relation between coerciv-
ity and hb field for the hysteresis loops seen in
Fig. 5. When hb is below a threshold that in-
creases with hy and is proportional to reduced en-
ergy, coercivity is independent of hb and constant.
This is because when hb is less than the threshold
and external field suffices to depin the wall at an
end, central energy barrier vanishes and the wall
is no longer pinned here. Beyond the threshold,
coercivity is proportional to the central uniaxial
anisotropy field hb since the contribution of the
uniaxial anisotropy to the total energy is also pro-
portional to it. Consequently the depinning en-
ergy supplied by the external field is proportional
to hb.
Beyond the threshold, slope of the line depends on
the number of cylinders n , and is independent of
hb. In Fig. 9, the evolution of one of these curves
against increasing n is shown.
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Figure 9. Evolution of coercivity versus hb curve
against increasing n.

4. Conclusion

In the present work, the dependence of mag-
netic hysteresis of a ferromagnetic amorphous
wire on the configuration of pinning regions, is
modelled. In the case that no pinning region ex-
cept the ones representing the closure domains at
ends is included, the hysteresis loop differs from
a perfect rectangular shape by small steps be-
fore single large Barkhausen jumps in both direc-
tions. This curve is in good agreement with the
experimentally observed ones in literature [1,5].
The fine structure of this curve confirms the ex-
istence of the pinning centers at the ends of the
wires. Coercivity of the loop is linearly propor-
tional to the magnitude of the pinning regions and
decreases as the distance between the adjacent
cylinders increases. When a local DC magnetic
field, representing unidirectional pinning center
is added to middle of the wire, the rectangular
like hysteresis loop looses its symmetry. Depend-
ing on the direction of this field, for example in
the descending part, one long horizontal stretch,
accompanied by small steps appears while it is
observed in either portions of the loop in the case
of uniaxial anisotropy. The relation between co-

ercivity and the magnitude in both cases and the
dependence of this relation on the number of the
cylinders is also presented.
We further showed that hysteresis curves of var-
ious shapes can be obtained by forming the pin-
ning regions at different locations along the wire
which can be experimentally formed by deforma-
tions perpendicular to the axis of a magnetostric-
tive amorphous ferromagnetic wire.
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