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Nondestructive testing (NDT) is the integral part of the performance evaluation of flexible pavements. In
all NDT methods, Falling Weight Deflectometer (FWD) is probably the most popular technique. Basically, it
measures time-domain deflections from numerous road sections emerging by the applied impulse load. In order
to characterize the structural integrity of considered pavement system, it is required to make an inversion for
the calculation of mechanical pavement properties using a backcalculation tool covering both a forward pavement
response model and an optimization algorithm. On the other hand, backcalculation problem can also be solved
by an adaptive system using a supervised learning algorithm. In this manner, multilayer perceptron (MLP) and
adaptive neuro-fuzzy system (ANFIS) methodologies, popular universal functional approximating techniques of
Artificial Intelligence (AI), are appropriate for pavement backcalculation problem. Therefore, two-phased (for-
ward and backward) structure of traditional backcalculation approaches is reduced into one step with the help of
the supervised learning mechanisms of MLP and ANFIS. In this study, these methodologies are both employed
to backcalculate mechanical properties of flexible pavements and compared in terms of modeling precision, un-
certainty handling, computational expense, and data requirements. Results indicated that, both techniques are
valid and have certain advantages over each other and should be preferred with respect to quantity and quality
of the data at hand. In addition, AI-based supervised nonlinear mapping techniques not only exhibit precise
backcalculation results, but also enable real-time pavement analyzing abilities.
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1. Introduction

Performance evaluation of flexible highway
pavements is fundamentally carried out for two
purposes, which are the structural evaluation of
existing pavement system and the quality con-
trol of a new pavement construction. Nondestruc-
tive testing (NDT) methods are the common way
of evaluating the pavement’s structural condition
since they do not damage the structure and ap-
plied more rapidly. Among all NDT methods,
Falling Weight Deflectometer (FWD) is the most
widely used technique because of its ability to
successfully simulate traffic loadings and capac-
ity to produce larger amount of deflection data in
unit time [1-3]. Basically, FWD measures time-
domain deflection values from numerous road sec-
tions emerging by the applied impulse load. In
traditional methods, deflections obtained from
FWD test are commonly utilized for the backcal-
culation of mechanical pavement properties us-
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ing specific software tools [4-7]. In this context,
there are two calculation directions in these codes,
namely forward and backward. In forward pro-
cess, deflections are calculated for considered traf-
fic loading, pavement structure, and initial me-
chanical parameters. Therefore, an appropriate
pavement stress-strain analysis method, such as
layered elastic theory, elastodynamic Green func-
tion solution, and Finite Element Method (FEM),
should be employed in forward direction of calcu-
lation. Through backward direction, calculated
deflections are compared with deflections mea-
sured by FWD and new mechanical properties
are estimated by a parameter identification rou-
tine. Consequently, this optimization steps are
performed until the discrepancy between calcu-
lated and measured deflections stays under a cer-
tain value. The fact is that this iterative process
may take considerable time and require extensive
computational power.

Multilayer perceptrons (MLPs) are a class of
artificial neural network (ANN) structures, fo-
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cuses on building intelligent codes that mimic the
learning mechanism of a human brain by consti-
tuting a parallel-connected network model. In a
MLP model, once the system is trained, network
can calculate outputs as a functional mapper us-
ing last updated network parameters. This is also
the reason why MLPs are called by “universal
functional approximaters”[8]. Under the way of
this, when using ANN methodology for pavement
backcalculation problems, it is possible to simu-
late the considered inverse mapping in real-time
[9-11].

The idea of ANN-based backcalculation was
first brought up by Meier and Rix [12], who con-
sidered MLP ethodology for the SASW test data
inversion and for the backcalculation of flexible
pavement layer properties. Later, Meier and Rix
[9] published the keynote study on the suitability
of ANN methodology on flexible pavement back-
calculation process. Successively, Meier and Rix
[10] presented another ANN-based backcalcula-
tion model involving dynamic aspects and rigid
bottom depth concepts. In addition to these
initial attempts, several researchers also focused
on ANN-based pavement backcalculation models
and implemented similar results [13-16]. It should
be noted that, MLP is an adaptive system utiliz-
ing supervised learning algorithms, such as gra-
dient descent, Lavenberg-Marquardt, and scaled
conjugate gradient. For that reason, it can solely
learn the behavior given by input/output data
pairs; thus, there is no underlying material model
and mechanical analysis methodology. As a re-
sult, the performance of an ANN-based backcal-
culation model is sensitive to quality and quantity
of training data [11].

Adaptive neuro-fuzzy inference system (AN-
FIS) is another AI-based supervised learning
methodology, making inferences by fuzzy logic
and shaping fuzzy membership functions using
neural network learning. Basically, ANFIS model
iteratively determines membership functions to
produce correct outputs, and simulates nonlinear
input-output mapping. Under the view of this,
ANFIS can also be employed for analogous adap-
tive backcalculation process and the technique is
quite accurate and fast with respect to FEM and
layered elastic approaches.

In this study, for the flexible pavement backcal-
culation problem, the susceptibility and relative
performances of MLP and ANFIS methodologies
are comprehensively compared in terms of mod-

eling precision, uncertainty handling, computa-
tional expense, and data requirements. Training
and testing data sets were synthetically obtained
by Finite Element Methodology (FEM), and a
total of 1500 data patterns were generated. In
addition, the advantages and drawbacks of these
AI methods are also evaluated with the consider-
ation of the quantity and appropriateness of data.

2. Nondestructive Testing and Backcalcu-
lation of Flexible Pavements

The determination of mechanical properties of
pavement layers by NDT methods is crucial for
the structural evaluation of existing flexible pave-
ments. The philosophy of the NDT methodology
for the structural performance of the pavement
system is that the structural integrity is inversely
proportional with the amount of surface deflec-
tions utilized by applied load. Fundamental dif-
ferences among deflection based NDT methods
come from the fact that loading type and deflec-
tion measurement locations are different for each
method. In general, applied loads are divided into
three categories, namely, static, steady-state vi-
bratory, and time domain impulse. Static loading
is the simplest case, which cannot behave like the
actual traffic loads.

In the time domain impulse loading, an impulse
load is applied on pavement surface and deflec-
tion data is recorded in time domain. Generally,
there are several sensors to measure the deflec-
tion values on different points of pavement sur-
face. Falling Weight Deflectometer is an impulse
loading device. In FWD test, a falling mass (an
impulse load within the range of 6.7kN-156kN)
is dropped on pavement surface, and transient
deflections are recorded at each geophone. The
impulse load is applied by a circular plate and a
rubber seal is placed between plate and pavement
surface in order to reduce the instant impact ef-
fect. In addition, transient surface deflections are
measured at different locations (usually at 7 loca-
tions) by geophones. Consequently, peak values
for each geophone are used to plot deflection basin
curve [17, 18].

Backcalculation process in pavement system is
the numerical analysis of measured surface deflec-
tions, which is performed for the estimation of
layer stiffness parameters (namely, moduli). In
order to accomplish this, measured deflections
are iteratively matched with calculated deflec-
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tions obtained by equivalent pavement response
model. Iterations are continued until a close
match between measured and calculated deflec-
tion values are satisfied. In this context, numer-
ous backcalculation techniques were developed for
the backcalculation of pavement layer moduli so
far. The fundamental discrepancies among devel-
oped backcalculation models are the type of for-
ward response model and the optimization proce-
dure carried out for the determination of appro-
priate layer modulus values [1, 4, 5, 7, 19].

Basically, pavement response analyses can be
considered as either static or dynamic. Static
approaches are based on the layered elastic the-
ory or finite element method (FEM) for linear
or nonlinear material behaviors. In dynamic re-
sponse analysis, loading can be either impulsive
or vibratory. Eventually, deflection data are ob-
tained in frequency domain or in time domain
for impulse loads, and in steady state for vi-
bratory loads. Additionally, in dynamic analy-
ses, elastodynamic methods (such as Green func-
tion solution) or dynamic FEMs are employed
to calculate surface deflections. For static and
dynamic backcalculation analyses, optimization
process can be performed using parameter identi-
fication routine (such as linear and nonlinear least
squares), database search method, and genetic al-
gorithm [3, 5, 7, 15, 17, 20, 21].

Besides existing advantages of dynamic ap-
proach, it has several obstacles coming from the
complexity and computational expense of dy-
namic analyses. Furthermore, in many problems,
it is hard to get all necessary data required for
a dynamic analysis. For these reasons, static ap-
proaches are preferred in the majority of pave-
ment backcalculation studies, because of their
simplicity and acceptable error ranges.

3. Multilayer Perceptron (MLP) and
Adaptive Neuro-Fuzzy Inference Sys-
tem

Artificial neural networks (ANNs) are paral-
lel connectionist structures, which simulate the
working network of neurons in human brain. Ba-
sically, as in human brain, artificial neural net-
works (ANNs) consist of neurons, which are par-
allel connected to each other via synapses. The
term perceptron is equated with a processing unit
including a single neuron, synaptic weights, and
bias term. In a perceptron, input signals are

accumulated after incorporating with synaptic
weights. Successively, total impulse is compared
with bias term and activation potential (νj) is cal-
culated. Consequently, the output signal is pro-
duced by the normalization of activation potential
to a certain range. Mathematical representation
of a perceptron is given below [8]

yk = ϕ(νj) = ϕ

(
n∑

i=1

xiwij − bj
)
, (1)

where xi is input signal, wij is synaptic weight,
bj is bias value, vj is activation potential, ϕ() is
activation potential, yk output signal, n is the
number of neurons for previous layer, and k is
the index of processing neuron.

Multilayer perceptrons (MLPs), also referred as
multi layer feedforward neural networks, comprise
an input layer, one or more hidden layer, and an
output layer. Learning in a MLP is an uncon-
strained optimization problem, which is subject
to the minimization of a global error function de-
pending on the synaptic weights of the network.
For a given training data consists of input-output
patterns, values of synaptic weights in a MLP are
iteratively updated by a learning algorithm to ap-
proximate the target behavior. This update pro-
cess is usually performed by backpropagating the
error signal layer by layer and adapting synaptic
weights with respect to the magnitude of error
signal. The first backpropagation learning algo-
rithm for use with MLP structures was presented
by Rumelhart [22]. In this algorithm, error en-
ergy is the generalized value of all errors that is
calculated by the least-squares formulation as fol-
lows [8]:

E =
1

mN

N∑

k=1

m∑

j=1

(
ykj − tkj

)2
, (2)

where m is the number of neurons in output
layer, N is number of training patterns, tkj is the
target value of processing neuron. Essentially,
this algorithm changes synaptic weights along the
negative gradient of error energy function; thus,
weight changes are proportional with the magni-
tude of error energy. The local error gradient is
defined by:

δn =
∂En
∂wn

(3)

and, the formulation of weight update is given as:

∆wn = α∆wn−1 + ηδnyn (4)
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where ∆w is weight update, η is learning rate
parameter that can be selected from the range
[0, 1], δ is local error gradient, y is output signal,
α indicates momentum term varying within [0, 1),
and n represents the processing neuron. [8, 22].

Standard backpropagation learning algorithm
usually exhibits poor performance for large-scale
problems, and its success is related with learning
rate and momentum term parameters. Conjugate
gradient algorithms are good choices to handle
the optimization of large-scale problems. Virtu-
ally, conjugate gradient algorithms use an adap-
tive learning rate parameter that determines the
step size of weight update to reach the global min-
imum of the performance function. The step size
is adjusted separately in each step with accor-
dance to the conjugate direction utilizing the fol-
lowing expression [23]:

∆wn = wn+1 −wn = αnpn , (5)

where p is search direction vector, and αn is step
size calculated by:

αn =
pTnrn
pTnHn

, (6)

where H is Hessian matrix, and r is the negative
error gradient vector. Algorithmically, conjugate
direction is determined by a recursive process by
the following expression:

pn+1 = rn+1 + βnpn (7)

in which βn is scaling factor. That is, conjugate
gradient methods approximate the step size us-
ing a line search routine to determine optimal
step size minimizing error energy along the line
wn + αpn. However, this is the major drawback
of these methods results in computational inef-
ficiency. For that reason, scaled conjugate algo-
rithm that does not require any line search rou-
tine was developed by [23]. In this new algorithm,
in order to avoid a line searching routine, the Hes-
sian matrix is described as follows:

Hn =
E′(wn + σnpn)−E′(wn)

σn
, (8)

where σn is the convergence factor used for the
determination of second order derivatives. How-
ever, Eq. 5 can be used for positive and definite
Hessian matrix, but this is not valid for every sit-
uation. In order to avoid this danger, a scalar pa-
rameter is set into this equation and the resulting

equation is as follows:

Hn =
E′(wn + σnpn)−E′(wn)

σn
+ λnpn , (9)

in which λn is Lagrange multiplier named by Mar-
quardt parameter, which is updated iteratively.
This algorithm is only reliable within the ter-
ritories of a small region around the searching
point. The extent of reliable region is controlled
by Marquardt parameter, and this scalar is ad-
justed gradually to regulate the indefiniteness of
the Hessian matrix. Consequently, in scaled con-
jugate gradient algorithm, the success of local
quadratic convergence is determined by the fol-
lowing equation:

χn =
2δn(E(wn)−E(wn + σnpn))

(pTn rn)2
, (10)

where χn is stopping parameter varying within
[0; 1], and if χn approaches to 1 then the conver-
gence is successful [23].

Fuzzy inference systems (FIS) are powerful
tools for the simulation of nonlinear behaviors uti-
lizing fuzzy logic and linguistic fuzzy rules. In the
literature, there are several inference techniques
developed for fuzzy rule-based systems, such as
Mamdani [24] and Sugeno [25]. Mamdani FIS
is the first inference methodology, in which in-
puts and outputs are represented by fuzzy rela-
tional equations in canonical rule-based form. In
Sugeno FIS, output of the fuzzy rule is character-
ized by a crisp function. Typical representation
of a fuzzy rule in a Sugeno FIS is given by:

IF x is A1 AND y is B1 THEN z = f(x, y) ,

(11)

where A and B are fuzzy sets and z is a crisp
function. In Sugeno FIS, the outcome of each
rule is a crisp value, and the result of all rules
is calculated by weighted average. Mathematical
definition of the nonlinear mapping of a Sugeno
FIS (fFS) can be written as follows:

fFS =

m∑
i=1

wi
n∏
j=1

µAij (xj)

m∑
i=1

n∏
j=1

µAij (xj)
, (12)

in which m is the number of rules, n defines the
number of data points, and µA is the membership
function of fuzzy set A.
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It is possible to simulate the nonlinear map-
ping, which is defined by known input-output
data, using FIS methodology. Obviously, this is
an unconstrained parameter identification prob-
lem based on the searching for optimal model pa-
rameters that can simulate target behavior. Jang
[26] presented an adaptive network approach to
solve this unconstrained optimization problem,
namely the adaptive neuro-fuzzy inference system
(ANFIS). Learning process in ANFIS methodol-
ogy, namely adaptation of membership functions,
is commonly performed by two techniques, i.e.
backpropagation and hybrid learning algorithms.
In hybrid learning algorithm, consequent parame-
ters are identified in forward computation by LSE
algorithm, and premise parameters are adjusted
in backward computation using backpropagation
algorithm.

In LSE methodology, the output of a linear
model is expressed by:

y = θ1f1(u) + θ2f2(u) + · · ·+ θnfn(u) + ε , (13)

where u(u1 · · ·un) is input vector, f(f1 · · · fn) are
known functions, y(y1 · · · ym) is output vector,
and θ(θ1 · · · θn) is unknown parameter vector. Us-
ing matrix notation, Eq. 13 can also be rewritten
as:

Aθ + ε = Y , (14)

where error is denoted by ε, and A is design ma-
trix defined by:

A =



f1(u1) · · · fn(u1)

...
. . .

...
f1(um) · · · fn(um)


 . (15)

The objective is to find LSE (θ∗) that minimizes
the sum of squared error, which is calculated by
||Aθ − Y ||2. In order to realize this, Eq. 13 is
updated by:

θ∗ = (ATA)−1ATY + ε . (16)

Consequently, θ∗ is obtained by an iterative pro-
cedure depending on following expression:

θn+1 = θn + Sn+1an+1(yTn+1 − aTn+1θn) , (17)

in which aTn is the nth row vector of A matrix,
yTn is the nth element of Y vector, θ0 = 0, and
parameter set (Sn+1) is calculated as follows:

Sn+1 = Sn −
Snan+1a

T
n+1Sn

1 + aTn+1Snan+1
, (18)

Figure 1. Illustration of FEM model for flexible pave-
ment analysis

where S0 is determined by identity matrix (I),
and a positive large number (γ) as given below:

S0 = γI (19)

4. Comparison of MLP and ANFIS
Methodologies for Pavement Backcal-
culation Problem

From the modeling point of view, MLP and
ANFIS methodologies can be utilized in the solu-
tion of this inverse problem based on the backcal-
culation of mechanical properties using measured
surface deflection values. Basically, considered
adaptive methodologies may be employed to learn
the inverse mapping between known input (layer
thicknesses, pavement moduli, and Poisson ratio)
and output (surface deflections) patterns in a su-
pervised manner. In this study, varying model
parameters to evaluate the different backcalcula-
tion abilities of MLP and ANFIS methodologies
were carried out.

Firstly, synthetic training and testing
databases were generated by Finite Element
Method (FEM). Then, MLP and ANFIS models
were trained and tested using these synthetic
databases. Then, small and poorly distributed
synthetic databases were generated by the same
manner, in order to investigate the role of num-
ber, scatting and uncertainty of training patterns
in both methodologies. Besides, results from both
methodologies were also compared with nonlinear
least square based method, namely conventional
backcalculation algorithm.
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Figure 2. Effect of network architecture on MLP’s performance

Table 1
Properties of synthetic training and testing model pa-
rameters.

Layer Thickness Young’s Modulus Poisson’s
m MPa Ratio

Surface 0.05-0.20 1000 - 15000 0.35 (fixed)
Base 0.15-0.50 35-300 0.40 (fixed)
Subgrade15.00 (fixed) 30-200 0.45 (fixed)

FWD deflections(δ0,δ1,δ2,δ3,δ4,δ5,δ6)

4.1. Backcalculation with Sufficient Flexi-
ble Pavement Data

In this analysis, synthetic training and testing
data sets, involving 1250 and 250 patterns are
utilized, respectively. The data were generated
by FEM. That is, inverse FEM inference is for-
mulated in the first analysis using adaptive meth-
ods. The three-layered flexible pavement model
is illustrated in Fig. 1. In order to prepare input
data for FEM model, parameters were randomly
selected from Gauss distribution in accordance
with predetermined ranges given in Table 1. The
reason of selecting Gauss distribution is the cen-
tral limit theorem and the need for generating ap-
propriate data within the predefined range. Fur-
thermore, 80kN of Equivalent Single Axle Load
(ESAL) for dual wheels is applied in the model.
Pavement layers were assumed linear elastic, and
computations were carried out by MATLAB 7.0.
Details of FEM method and the software are be-
yond the scope of this study, and can be found
elsewhere [27].

For MLP-based backcalculation session, train-

ing data were normalized to the range of [−1, 1]
and synaptic weights were selected randomly
from normal distribution. This preprocessing
technique is widely accepted method to increase
the MLP’s performance [8, 10]. It should be noted
that, the scaling was performed in accordance
with the hyperbolic tangential activation function
as follows:

Xnew =
X − xmin

xmax − xmin
, (20)

where Xnew is normalized value, X is original
value, and xmax, xmin are the maximum and
the minimum values in the dataset, respectively.
Error energy is measured by mean squared
error (MSE) based formulation as given in
Eq. 2. Scaled conjugate gradient learning algo-
rithm was employed for 10000 epochs (network
pass) throughout learning process. In order to
determine optimal MLP architecture, a paramet-
ric study is carried out with trial-and-error basis.
In Fig. 2, results for varying network architec-
tures are shown, and 9x50x40x3 was decided to
be the optimal structure.

There are two primary training parameters
(λ and σ) to be determined at the beginning
of scaled conjugate gradient learning process.
The parameter “σ”determines the change in the
weight for the second derivative approximation,
and the parameter “λ”regulates the indefiniteness
of the Hessian matrix. In this study, these param-
eters are selected by 0.00005 and 0.00007 for λ
and σ, respectively [23, 28]. The training process
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Table 2
Result of training and testing sessions.

Duration Asphalt Base Subgrade
Method Session (hour) Coef. of det. Coef. of det. Coef. of det.

R2 R2 R2

MLP Training 0.92 0.97 0.92 0.96
(9x50x40x3) Testing real-time 0.91 0.88 0.92

ANFIS Training 73 0.71 0.62 0.69
Testing 9 0.64 0.58 0.60

MICHBACK Training 0.27 0.94 0.90 0.91
Testing 0.14 0.92 0.87 0.90

took between 3 min to 4 hours with a P4 3.0GHz
and 1GB RAM PC.

On the other hand, for ANFIS-based back-
calculation session, input parameters were par-
titioned using grid partitioning technique and
Gaussian membership functions (Eq. 21).

f(x) = e
−(x−c)2

2σ2 , (21)

in which c and σ are the functional parameters de-
scribing the shape of the curve. Input variables
were fuzzified by dividing them into 3 partitions.
Additionally, the first order Sugeno FIS with lin-
ear output function was selected as the inference
system. ANFIS structure was completed by the
selection of hybrid learning algorithm. Since grid
partitioning was selected, 39 = 19683 fuzzy rules
were established for the inference system. Obvi-
ously, this size of rule-base is extremely large and
computationally inefficient; so, it is required to
reduce input space partitioning to limit the rule-
base size. Nevertheless, it is not possible to de-
crease the partitioning to a smaller value than 3
for modeling precision. Actually, ANFIS method-
ology and fuzzy partitioning are not appropriate
for a multivariate nonlinear approximation prob-
lem comprising 9 input variables. In the rule-
base, fuzzy variables were connected with T-norm
(fuzzy AND) operators and rules were associated
using max-min decomposition technique. Fur-
thermore, training continued for over 1000 epochs
and process terminated by the observation of the
stability in error decrement. As a result of the
size of rule base and the number of training pat-
terns, training process lasted 73 hours with the
same PC mentioned previously. As a result, nei-
ther model precision nor computational require-
ments found appropriate for the solution of such
a problem using ANFIS.

In order to asses the performance of conven-
tional backcalculation techniques, MICHBACK
computer program was also employed for same
data. MICHBACK is a backcalculation software,
using nonlinear least-square optimization tech-
nique, developed by University of Michigan Ann
Arbor [19]. Comparative results of MLP, ANFIS,
and MICHBACK based backcalculation analyses
are given in Table 2. As can be seen from this
table, MLP exhibited superior performance over
other methods. Although MICHBACK is less
precise than MLP, it produced satisfactory re-
sults. Apart from that, ANFIS was unsuccessful
on considered backcalculation problem in terms
of modeling ability and extremely high compu-
tational expense. In other words, 1250 training
pattern and 9 input variables are not feasible for
ANFIS based backcalculation process.

Also, same backcalculation models were em-
ployed for unseen testing data. Similar to train-
ing session, the architecture of MLP was chosen
as 9x50x40x3 in testing session. Testing data
was generated in the same way and consists of
250 different test patterns. The reason of test-
ing was to investigate the performance of MLP
on unrecognized data. Details of this session
are also given in Table 2. Comparing testing
and the training results, MLP exhibited poorer
performance, yet showed good precision. MLP
proved to be the most successful backcalculation
methodology as well as faster real-time backcal-
culation capability where there is a large num-
ber of training data. It should be emphasized
in assessing the performance of adaptive methods
that, these methods are limited by the ranges and
behavior of training patterns and do not guar-
antee meaningful outcomes beyond these ranges.
Consequently, in order to illustrate the model-
ing precision for asphalt concrete, base, and sub-
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Figure 3. Scatter plots of AC layer for training data (a) MLP, (b) MICHBACK, (c) ANFIS

Table 3
Ranges of training and testing variable for the second
analysis.

Layer Thickness Young’s Modulus Poisson’s
m MPa Ratio

Surface 0.10(fixed) 1000 - 15000 0.35 (fixed)
Base 0.30(fixed) 35-300 0.40 (fixed)
Subgrade15.00(fixed) 30-200 0.45 (fixed)

FWD deflections (δ0,δ1,δ2,δ3,δ4)

grade layers, scatting graphs between calculated
and measured deflections for training and testing
sessions are shown from Fig. 3 to Fig. 8, respec-
tively.

4.2. Backcalculation of Incomplete Pave-
ment Data

In the second phase of this study, another
comparative analysis was carried out to evaluate
the performances of considered methodologies,
namely MLP, ANFIS, and conventional backcal-
culation (MICHBACK), on incomplete and/or
small amount of flexible pavement data. It is
likely when performing a backcalculation analy-
sis that, there may not have large amount of data
or the distribution of data may not be uniform.
Furthermore, layer thicknesses can be the only
output of the system, or it may be focused on
one layer instead of whole structure. As a re-
sult, it may be misleading to prefer MLP over
other methods (as implemented in the first anal-

ysis) for backcalculation under undesirable con-
ditions. Especially, MLP is quite sensitive to the
quality and the quantity of data, and network
cannot produce meaningful outcomes for unrec-
ognized inputs eventhough training session is suc-
cessful [11].

In order to prove this, another hypotheti-
cal flexible pavement system was designed, and
input-output data were limited. The ranges of
model parameters for the second analysis are
given in Table 3. As can be seen from Table 3, five
surface deflections were selected as input variable
and three pavement moduli were chosen as out-
put parameter to develop pavement model. The
numbers of training and testing patterns were also
limited to 76 and 24, respectively. The scatting
behavior of training data was not homogeneous,
and there are unrecognized patterns in testing
data. In ANFIS model, input variables were di-
vided into 6 partitions; thus, there are 56 = 3125
IF-THEN rules in the rule-base. Other attributes
of MLP and ANFIS models were kept same with
the first analysis.

In Table 4, results of training and testing ses-
sions of second analysis are given. As can be seen
from the table, durations of all training sessions
were reduced with reference to the first analysis.
Contrary to the first analysis, ANFIS model char-
acterized the outcome better than MLP method.
Especially for testing session, MLP based back-
calculation exhibited unacceptable performance
on unrecognized data patterns. Consequently,
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Figure 4. Scatter plots of AC layer for testing data (a) MLP, (b) MICHBACK, (c) ANFIS

Figure 5. Scatter plots of base layer for training data (a) MLP, (b) MICHBACK, (c) ANFIS

Figure 6. Scatter plots of base layer for testing data (a) MLP, (b) MICHBACK, (c) ANFIS
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Table 4
Result of second training and testing sessions.

Duration Asphalt Base Subgrade
Method Session (hour) Coef. of det. Coef. of det. Coef. of det.

R2 R2 R2

MLP Training 0.12 0.89 0.85 0.88
(9x50x40x3) Testing real-time 0.68 0.61 0.71

ANFIS Training 0.68 0.90 0.88 0.90
Testing 0.02 0.81 0.80 0.82

MICHBACK Training 0.09 0.92 0.87 0.89
Testing 0.04 0.91 0.85 0.87

Figure 7. Scatter plots of subgrade for training data (a) MLP, (b) MICHBACK, (c) ANFIS

Figure 8. Scatter plots of subgrade for testing data (a) MLP, (b) MICHBACK, (c) ANFIS
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Figure 9. Scatter plots of AC layer for second training data (a) MLP, (b) MICHBACK, (c) ANFIS

ANFIS seems more successful over MLP if lack
of data exists.

Scatter graphs between calculated and mea-
sured deflections were only plotted for AC layer.
In Fig. 9 and Fig. 10, training and testing ses-
sions’ scatter plots are given, respectively. Scatter
plots for base and subgrade are omitted in order
to save space; yet, same conclusion can be drawn
for these layers.

In summary, for the second analysis, MLP ex-
hibited the poorest performance. Although train-
ing results are almost the same for all methods,
outcomes of testing session are different. It should
be noted that, MLP is unsuccessful for testing ses-
sion, and failed for unrecognized patterns. AN-
FIS model exhibited quite good performance than
MLP, but slightly poorer performance compared
with MICHBACK. The reason of drastic perfor-
mance increment and processing time decrement
in ANFIS model is due to the increase in the in-
put space partitioning, and significant reduction
in the number of training patterns during the sec-
ond analysis.

5. Conclusions

In this study, multi-layer perceptron (MLP)
and adaptive neuro-fuzzy inference system (AN-
FIS) methodologies were employed for backcal-
culation of flexible pavements. Results of these
adaptive techniques were also compared with
a conventional backcalculation program (MICH-
BACK) using nonlinear least-square estimator.

In order to investigate the effect of the quality and
the quantity of model data, two different analy-
ses were performed. This study of comparison of
multilayer perceptron and adaptive neuro-fuzzy
system on backcalculating the mechanical prop-
erties of flexible pavements lead to the following
conclusions.

• Adaptive backcalculation methodologies,
namely MLP and ANFIS, are fundamen-
tally different from conventional backcalcu-
lation techniques and cannot be replaced
completely since there is no physical prin-
ciple, mechanical background, and material
behavior utilized in these techniques. How-
ever, they give precise results comparing to
classical methods. Furthermore, results are
obtained faster; hence the methods are suit-
able for real time calculations.

• MLP is the best choice if sufficient amount
of data exists to characterize the target be-
havior. Otherwise, ANFIS should be pre-
ferred due to its ability of fuzzy logic which
manages uncertainty.

• ANFIS methodology can be employed for
backcalculation problems involving consid-
erable amount of uncertainty or having in-
complete data.

• In ANFIS methodology, input space parti-
tioning and the size of rule-base are crucial
for computational expense. For this reason,
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Figure 10. Scatter plots of AC layer for second testing data (a) MLP, (b) MICHBACK, (c) ANFIS

this method is appropriate for problems
having relatively small number of input
variables and/or involving small to medium
number of training patterns.
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