Vol. 55 No. 1 (2023): ITU ARI, 55(1), 2023
ITU ARI-A Natural Sciences

Suspending nanoparticles (hBN and ZnO) in non-polar media by liposomal encapsulation

Zulhice Tanrıseven
İstanbul Technical University
Cover image of ITU ARI

Published 05/29/2023

Keywords

  • Liposome,
  • Hexagonal Boron Nitride,
  • Zinc Oxide,
  • Encapsulation,
  • Nano additives

How to Cite

Tanrıseven, Zulhice. 2023. “Suspending Nanoparticles (hBN and ZnO) in Non-Polar Media by Liposomal Encapsulation”. ITU ARI Bulletin of Istanbul Technical University 55 (1):7-14. https://ari.itu.edu.tr/index.php/ituari/article/view/70.

Abstract

Nanoparticles have aggregation tendencies. In order to prevent aggregation and provide isolation from medium and each other, encapsulation is a solution. In this study, two selected nanoparticles, hexagonal boron nitride (hBN) and zinc oxide (ZnO) are suspended in non-polar medium by liposomal encapsulation. TEM and particle size analyses were conducted to characterize the prepared nanofluid containing liposomal nanoparticles. Results showed the stability of prepared liposomes while they stayed intact for more than three months. Prepared hBN liposomes are found to be 270 nm with 0.037 PDI and ZnO liposomes are 380 nm with 0.172 PDI value. Prepared nanofluids were introduced to SAE5W40 engine oil. Suspension stability and lubrication effects of prepared nanofluids in engine oil were examined by turbidimetry method and tribometric tests, respectively. Both hBN and ZnO nanofluids showed low TSI values; they decreased the friction coefficient of original oil by 18.83 and 19.13 percent, respectively.

References

  1. Al Sawaftah, N. M., & Husseini, G. A. (2020). Ultrasound-Mediated Drug Delivery in Cancer Therapy: A Review [Research Support, Non-U S Gov't Review]. J Nanosci Nanotechnol, 20(12), 7211-7230. https://doi.org/10.1166/jnn.2020.18877.
  2. Amiruddin, H., Abdollah, M. F. H., Idris, A. M., Abdullah, M. I. H. C., & Tamaldin, N. (2015). Stability of nano-oil by pH control in stationary conditions. Proceedings of Mechanical Engineering Research Day 2015, 55–56.
  3. Bhaumik, S., Maggirwar, R., Datta, S., & Pathak, S. D. (2018). Analyses of anti-wear and extreme pressure properties of castor oil with zinc oxide nano friction modifiers. Applied Surface Science, 449, 277-286. https://doi.org/10.1016/j.apsusc.2017.12.131.
  4. Chua, M. I. H., Abdollah, M. F. B., Amiruddin, H., Tamaldin, N., & Mat Nuri, N. (2016). The potential of hBN nanoparticles as friction modifier and antiwear additive in engine oil. Mechanics and Industry, 17, 104. https://doi.org/10.1051/meca/2015037.
  5. Çelik, O. N., Ay, N., & Göncü, Y. (2013). Effect of Nano Hexagonal Boron Nitride Lubricant Additives on the Friction and Wear Properties of AISI 4140 Steel. Particulate Science and Technology, 31(5), 501-506. https://doi.org/10.1080/02726351.2013.779336.
  6. Elagouz, A., Ali, M. K. A., Xianjun, H., Abdelkareem, M. A. A., & Hassan, M. A. (2020). Frictional performance evaluation of sliding surfaces lubricated by zinc - oxide nano-additives. Surface Engineering, 36(2), 144–157. https://doi.org/10.1080/02670844.2019.1620442
  7. Gregoriadis, G., & McCormack, B. (2005). Liposomes and Polysialic Acids as Drug Delivery Systems. In D. R. Karsa & R. A. Stephenson (Eds.), Encapsulation and Controlled Release (pp. 75-85). Woodhead Publishing. https://doi.org/https://doi.org/10.1533/9781845698218.75.
  8. Hernández Battez, A. H., Fernandez, J. E., Tucho, R., Cuetos, J. M., & Chou, R. (2006, July). Some aspects of oil lubricant additivation with ZnO nanoparticles. 5th International Conference on Mechanics and Materials in Design. http://eprints.bournemouth.ac.uk/21062/
  9. Hernández Battez, A., Fernandez Rico, J. E., Navas Arias, A., Viesca Rodriguez, J. L., Chou Rodriguez, R., & Diaz Fernandez, J. M. (2006). The tribological behaviour of ZnO nanoparticles as an additive to PAO6. Wear, 261(3), 256-263. https://doi.org/10.1016/j.wear.2005.10.001.
  10. Hernández Battez, A., González, R., Viesca, J. L., Fernández, J. E., Díaz Fernández, J. M., Machado, A., . . . Riba, J. (2008). CuO, ZrO2 and ZnO nanoparticles as antiwear additive in oil lubricants. Wear, 265(3), 422-428. https://doi.org/10.1016/j.wear.2007.11.013.
  11. Hong, S.-C., Park, K.-M., Hong, C. R., Kim, J.-C., Yang, S.-H., Yu, H.-S., . . . Chang, P.-S. (2020). Microfluidic assembly of liposomes dual-loaded with catechin and curcumin for enhancing bioavailability. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 594, 124670. https://doi.org/10.1016/j.colsurfa.2020.124670.
  12. Jo, M., Park, K.-M., Park, J.-Y., Yu, H., Choi, S. J., & Chang, P.-S. (2020). Microfluidic assembly of mono-dispersed liposome and its surface modification for enhancing the colloidal stability. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 586, 124202. https://doi.org/10.1016/j.colsurfa.2019.124202.
  13. Kakami, Y., Takeuchi, I., & Makino, K. (2019). Percutaneous immunization with 40-nm antigen-encapsulated elastic liposomes. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 566, 128-133. https://doi.org/10.1016/j.colsurfa.2019.01.023.
  14. Nasser, K. I., Liñeira del Río, J. M., López, E. R., & Fernández, J. (2020). Synergistic effects of hexagonal boron nitride nanoparticles and phosphonium ionic liquids as hybrid lubricant additives. Journal of Molecular Liquids, 311, 113343. https://doi.org/10.1016/j.molliq.2020.113343.
  15. Pan, M., Shi, X., Lyu, F., Levy-Wendt, B. L., Zheng, X., & Tang, S. K. Y. (2017). Encapsulation of Single Nanoparticle in Fast-Evaporating Micro-droplets Prevents Particle Agglomeration in Nanocomposites. ACS Applied Materials & Interfaces, 9(31), 26602-26609. https://doi.org/10.1021/acsami.7b07773.
  16. Sahil, K., Premjeet, S., Bilandi, A., Middha, A., & Bhawna, K. (2011). Stealth liposomes: a review. IJRAP, 2(5), 1534-1538.
  17. Shehzad, A., Ul-Islam, M., Wahid, F., & Lee, Y. S. (2014). Multifunctional polymeric nanocurcumin for cancer therapy [Review]. J Nanosci Nanotechnol, 14(1), 803-814. https://doi.org/10.1166/jnn.2014.9103.
  18. Tanrıseven, Z., Gül, A., & Özayman, M. (2020). A simple route to suspend boric acid in non-polar media. SN Applied Sciences, 2. https://doi.org/10.1007/s42452-020-03385-8.
  19. Vardhaman, B. S. A., Amarnath, M., Ramkumar, J., & Mondal, K. (2020). Enhanced tribological performances of zinc oxide/MWCNTs hybrid nanomaterials as the effective lubricant additive in engine oil. Materials Chemistry and Physics, 253, 123447. https://doi.org/10.1016/j.matchemphys.2020.123447.
  20. Wu, L., Zhang, Y., Yang, G., Zhang, S., Yu, L., & Zhang, P. (2016). Tribological properties of oleic acid-modified zinc oxide nanoparticles as the lubricant additive in poly-alpha olefin and diisooctyl sebacate base oils [10.1039/C6RA10042B]. RSC Advances, 6(74), 69836-69844. https://doi.org/10.1039/c6ra10042b.
  21. Yu, W., & Xie, H. (2012). A Review on Nanofluids: Preparation, Stability Mechanisms, and Applications. Journal of Nanomaterials, 2012, 17. https://doi.org/10.1155/2012/435873.