Vol. 55 No. sp. is. 1 (2023): Vol. 55, special issue 1, 2023: In memoriam to the late Prof. Dr. Yusuf YAĞCI (1952-2023)
ITU ARI-A Natural Sciences

Hyaluronic Acid-Enriched Pectin-Based Hydrogel Films for Wound Healing: Hyaluronic Acid-Pectin Hydrogels

F. Seniha Güner
Istanbul Technical University

Published 02/03/2024

Keywords

  • Pectin,
  • Hyaluronic acid,
  • Hydrogel,
  • Wound treatment

How to Cite

Güner Yılmaz, Ö. Zeynep, and F. Seniha Güner. 2024. “Hyaluronic Acid-Enriched Pectin-Based Hydrogel Films for Wound Healing: Hyaluronic Acid-Pectin Hydrogels”. ITU ARI Bulletin of Istanbul Technical University 55 (sp. is. 1):15-22. https://ari.itu.edu.tr/index.php/ituari/article/view/71.

Abstract

Wound healing research is always looking for approaches to improve patient care. Advanced wound dressings are critical in this process. In this context, the article focuses on the comprehensive examination of the potential of hyaluronic acid-enriched pectin-based hydrogel films to advance wound healing. For comparative analysis, two formulations were prepared: a pectin matrix and a film containing fifty percent hyaluronic acid and pectin. Both formulations were cross-linked using calcium ions. The hydrogels underwent thorough characterization, including Fourier-transform infrared spectroscopy analysis for chemical composition, differential scanning calorimetry for thermal properties determination, and scanning electron microscope imaging for morphological examination of cross-sections. We thoroughly examine their fluid-handling capacities, dehydration rates, and water vapor permeability through meticulous inspection. These characteristics have a significant impact on elasticity, moisture retention, and overall effectiveness throughout the healing process. To demonstrate the transformative potential of HA-enriched pectin-based hydrogel films, we compare their properties to those of pectin hydrogel and a commercial alginate-based wound dressing. As a result, the investigation revealed a notable enhancement in the transparency of the wound dressing, a crucial factor for facilitating continuous monitoring of the wound site without necessitating frequent removal of the dressing. The improvement in water vapor permeability suggests an optimized moisture balance, fostering an environment conducive to efficient wound healing. Moreover, the smoother film contributes to the overall comfort for patients and potentially minimizes skin irritation and discomfort during prolonged wear. The innovative features identified in this study collectively point towards the prospect of these hydrogel films not only as effective wound dressings but also as a step forward in addressing the practical aspects of patient comfort and convenience.

References

  1. American Society for Testing and Materials. (2015). ASTM D2240-15 Standard Test Methods for Rubber Property-Durometer Hardness. Annual Book of ASTM Standards, 1–13. https://doi.org/10.1520/D2240-15.2
  2. Andriotis, E. G., Eleftheriadis, G. K., Karavasili, C., & Fatouros, D. G. (2020). Development of bio-active patches based on Pectin for the treatment of Ulcers and wounds using 3D-bioprinting technology. Pharmaceutics, 12(1). https://doi.org/10.3390/pharmaceutics12010056
  3. Balakrishnan, B., Mohanty, M., Umashankar, P. R., & Jayakrishnan, A. (2005). Evaluation of an in situ forming hydrogel wound dressing based on oxidized alginate and gelatin. Biomaterials, 26(32), 6335–6342. https://doi.org/10.1016/j.biomaterials.2005.04.012
  4. Bozer, B. M., Özkahraman, B., & Mert, H. (2023). Photocrosslinked methacrylated pectin and methacrylated hyaluronic acıd wound dressing loaded with oleuropein as a bioactive agent. International Journal of Polymeric Materials and Polymeric Biomaterials, 0(0), 1–13. https://doi.org/10.1080/00914037.2023.2235875
  5. Chauhan, N., Saxena, K., & Jain, U. (2022). Hydrogel based materials: A progressive approach towards advancement in biomedical applications. Materials Today Communications, 33(September), 104369. https://doi.org/10.1016/j.mtcomm.2022.104369
  6. Conshohocken, W. (1996). ASTM E 96 - 00 Standard Test Methods for Water Vapor Transmission of Materials. Current, 91(Reapproved), 98–100.
  7. de Oliveira, S. A., da Silva, B. C., Riegel-Vidotti, I. C., Urbano, A., de Sousa Faria-Tischer, P. C., & Tischer, C. A. (2017). Production and characterization of bacterial cellulose membranes with hyaluronic acid from chicken comb. International Journal of Biological Macromolecules, 97, 642–653. https://doi.org/10.1016/j.ijbiomac.2017.01.077
  8. Divyashri, G., Badhe, R. V., Sadanandan, B., Vijayalakshmi, V., Kumari, M., Ashrit, P., Bijukumar, D., Mathew, M. T., Shetty, K., & Raghu, A. V. (2022). Applications of hydrogel-based delivery systems in wound care and treatment: An up-to-date review. Polymers for Advanced Technologies, 33(7), 2025–2043. https://doi.org/10.1002/pat.5661
  9. Farahnaky, A., Sharifi, S., Imani, B., Dorodmand, M. M., & Majzoobi, M. (2018). Physicochemical and mechanical properties of pectin-carbon nanotubes films produced by chemical bonding. Food Packaging and Shelf Life, 16(January), 8–14. https://doi.org/10.1016/j.fpsl.2018.01.004
  10. Gałkowska, D., Długosz, M., Juszczak, L., Takamine, K., Abe, J., Shimono, K., Sameshima, Y., Morimura, S., Kida, K., & Sriamornsak, P. (2003). Chemistry of Pectin and Its Pharmaceutical Uses : A Review. Silpakorn University Open Journal Systems, 3(4), 206–228.
  11. Grkovic, M., Stojanovic, D. B., Kojovic, A., Strnad, S., Kreze, T., Aleksic, R., & Uskokovic, P. S. (2015). Keratin-polyethylene oxide bio-nanocomposites reinforced with ultrasonically functionalized graphene. RSC Advances, 5(111), 91280–91287. https://doi.org/10.1039/c5ra12402f
  12. Güner, O. Z., Cam, C., Arabacioglu-Kocaaga, B., Batirel, S., & Güner, F. S. (2018). Theophylline-loaded pectin-based hydrogels. I. Effect of medium pH and preparation conditions on drug release profile. Journal of Applied Polymer Science, 135(38), 1–12. https://doi.org/10.1002/app.46731
  13. Güner, O. Z., Kocaaga, B., Batirel, S., Kurkcuoglu, O., & Güner, F. S. (2021). 2-Thiobarbituric acid addition improves structural integrity and controlled drug delivery of biocompatible pectin hydrogels. International Journal of Polymeric Materials and Polymeric Biomaterials, 70(10), 703–711. https://doi.org/10.1080/00914037.2020.1760272
  14. Kafedjiiski, K., Jetti, R. K. R., Föger, F., Hoyer, H., Werle, M., Hoffer, M., & Bernkop-Schnürch, A. (2007). Synthesis and in vitro evaluation of thiolated hyaluronic acid for mucoadhesive drug delivery. International Journal of Pharmaceutics, 343(1–2), 48–58. https://doi.org/10.1016/j.ijpharm.2007.04.019
  15. Kumar, P. T. S., Ramya, C., Jayakumar, R., Nair, S. kumar V., & Lakshmanan, V. K. (2013). Drug delivery and tissue engineering applications of biocompatible pectin-chitin/nano CaCO3 composite scaffolds. Colloids and Surfaces B: Biointerfaces, 106, 109–116. https://doi.org/10.1016/j.colsurfb.2013.01.048
  16. Kurhade, S., Momin, M., Khanekar, P., & Mhatre, S. (2013). Novel biocompatible honey hydrogel wound healing sponge for chronic ulcers. International Journal of Drug Delivery, 5(4), 353–361.
  17. Liao, Q., Kulkarni, Y., Sengupta, U., Petrović, D., Mulholland, A. J., Van Der Kamp, M. W., Strodel, B., & Kamerlin, S. C. L. (2018). Loop Motion in Triosephosphate Isomerase Is Not a Simple Open and Shut Case. Journal of the American Chemical Society, 140(46), 15889–15903. https://doi.org/10.1021/jacs.8b09378
  18. Martucci, J. F., & Ruseckaite, R. A. (2010). Biodegradable three-layer film derived from bovine gelatin. Journal of Food Engineering, 99(3), 377–383. https://doi.org/10.1016/j.jfoodeng.2010.02.023
  19. Mero, A., & Campisi, M. (2014). Hyaluronic acid bioconjugates for the delivery of bioactive molecules. Polymers, 6(1), 346–369. https://doi.org/10.3390/polym6020346
  20. Methods, S. T. (2001). ASTM D 522: Standard Test Methods for Mandrel Bend Test of Attached Organic Coatings. ASTM International, Reapproved, 1–4.
  21. Price, R. D., Myers, S., Leigh, I. M., & Navsaria, H. A. (2005). The Role of Hyaluronic Acid in Wound Healing. American Journal of Clinical Dermatology, 6(6), 393–402. https://doi.org/10.2165/00128071-200506060-00006
  22. Tarusha, L., Paoletti, S., Travan, A., & Marsich, E. (2018). Alginate membranes loaded with hyaluronic acid and silver nanoparticles to foster tissue healing and to control bacterial contamination of non-healing wounds. Journal of Materials Science: Materials in Medicine, 29(3). https://doi.org/10.1007/s10856-018-6027-7
  23. Taufiq, M., & Saiffullah, B. I. N. (2019). Optimization of Pectin Extraction From. January, 1–13.
  24. Updated, L., En, T., This, F. A. C., Tm-, S., Capacity, F. H., Handling, F., & This, C. (2016). EN 13726 Primary Wound Dressing Test Methods. British and European Standard Test Methods, January 2011. http://www.smtl.co.uk/testing-services/54-wound-dressings-testing-services/127-primary-wound-dressings.html
  25. Uzun, M., Anand, S. C., & Shah, T. (2013). In Vitro Characterisation and Evaluation of Different Types of Wound Dressing Materials. Journal of Biomedical Engineering and Technology, 1(1), 1–7. https://doi.org/10.12691/jbet-1-1-1
  26. Wang, S. Bin, Chen, A. Z., Weng, L. J., Chen, M. Y., & Xie, X. L. (2004). Effect of Drug-loading Methods on Drug Load, Encapsulation Efficiency and Release Properties of Alginate/Poly-L-Arginine/Chitosan Ternary Complex Microcapsules. Macromolecular Bioscience, 4(1), 27–30. https://doi.org/10.1002/mabi.200300043
  27. Wang, W., Ma, X., Jiang, P., Hu, L., Zhi, Z., Chen, J., Ding, T., Ye, X., & Liu, D. (2016). Characterization of pectin from grapefruit peel: A comparison of ultrasound-assisted and conventional heating extractions. Food Hydrocolloids, 61, 730–739. https://doi.org/10.1016/j.foodhyd.2016.06.019
  28. Yang, W., Xu, H., Lan, Y., Zhu, Q., Liu, Y., Huang, S., Shi, S., Hancharou, A., Tang, B., & Guo, R. (2019). Preparation and characterisation of a novel silk fibroin/hyaluronic acid/sodium alginate scaffold for skin repair. International Journal of Biological Macromolecules, 130, 58–67. https://doi.org/10.1016/j.ijbiomac.2019.02.120
  29. Zhou, Z., Chen, J., Peng, C., Huang, T., Zhou, H., Ou, B., Chen, J., Liu, Q., He, S., Cao, D., Huang, H., & Xiang, L. (2014). Fabrication and physical properties of gelatin/sodium alginate/hyaluronic acid composite wound dressing hydrogel. Journal of Macromolecular Science, Part A: Pure and Applied Chemistry, 51(4), 318–325. https://doi.org/10.1080/10601325.2014.882693