Vol. 55 No. sp. is. 1 (2023): Vol. 55, special issue 1, 2023: In memoriam to the late Prof. Dr. Yusuf YAĞCI (1952-2023)
ITU ARI-A Natural Sciences

Visible Light-Induced Fabrication of a Clickable Cu(I) Benzophenone Dicarboxylate Polymer - Polyacrylamide Hydrogel Composite

Sena Ermiş
Istanbul Technical University, Chemistry Department, Maslak, 34469 İstanbul, Türkiye
Mehmet Bilgehan Bilgiç
Wood Coating R&D Centre, Kubilay Boya, Aliağa, 35800 İzmir, Türkiye
Barış Kışkan
Istanbul Technical University, Chemistry Department, Maslak, 34469 İstanbul, Türkiye
Kerem Kaya
Istanbul Technical University
Bulletin of the Istanbul Technical University

Published 02/03/2024

Keywords

  • hydrogels,
  • polyacrylamide,
  • coordination polymers,
  • light-induced polymerization,
  • Type II photoinitiator

How to Cite

Ermiş, Sena, Mehmet Bilgehan Bilgiç, Barış Kışkan, and Kerem Kaya. 2024. “Visible Light-Induced Fabrication of a Clickable Cu(I) Benzophenone Dicarboxylate Polymer - Polyacrylamide Hydrogel Composite”. ITU ARI Bulletin of Istanbul Technical University 55 (sp. is. 1):23-28. https://ari.itu.edu.tr/index.php/ituari/article/view/72.

Abstract

Hydrogels are a class of hydrophilic polymers that have been widely applied in numerous fields, most of which are related to bioengineering such as tissue scaffolds, biosensing and antibacterial activity. Especially, polyacrylamide (PAAm) hydrogels, due to their superior stability, non-toxicity and viscoelasticity, have been extensively studied over the last two decades in different bio-related applications. Coordination polymers (CPs) including metal-organic frameworks (MOFs), due to tunability of the organic linkers and metal ions, and their robustness, have been incorporated with hydrogels in order to improve the physical/chemical properties of the final composite. Herein, we report for the first time, the use of a photoactive Cu(I) coordination polymer, as Norrish type II photoinitiator, for the visible light-induced in situ fabrication of a clickable and highly-crosslinked Cu(I)CP-PAAm hydrogel composite using water as the solvent. Due to the high stability of the Cu(I)CP in water, that was demonstrated by powder X-ray studies, the release of copper ions was observed to occur after more than two days. Another advantage of the developed synthetic method, is the possibility to readily post-modify the hydrogel-composite by employing an azide-functionalized polymer through internal copper-catalyzed azide-alkyne click reaction.

References

  1. Aakeröy, C. B., Baldrighi, M., Desper, J., Metrangolo, P., & Resnati, G. (2013). Supramolecular Hierarchy among Halogen-Bond Donors. Chemistry – A European Journal, 19(48), 16240-16247. https://doi.org/https://doi.org/10.1002/chem.201302162
  2. Abdurrahmanoglu, S., Cilingir, M., & Okay, O. (2011). Dodecyl methacrylate as a crosslinker in the preparation of tough polyacrylamide hydrogels. Polymer, 52(3), 694-699. https://doi.org/https://doi.org/10.1016/j.polymer.2010.12.044
  3. Ahmed, E. M. (2015). Hydrogel: Preparation, characterization, and applications: A review. Journal of Advanced Research, 6(2), 105-121. https://doi.org/https://doi.org/10.1016/j.jare.2013.07.006
  4. Al-Mahamad, L. L. G., El-Zubir, O., Smith, D. G., Horrocks, B. R., & Houlton, A. (2017). A coordination polymer for the site-specific integration of semiconducting sequences into DNA-based materials. Nature Communications, 8(1), 720. https://doi.org/10.1038/s41467-017-00852-6
  5. Aydınoğlu, D., Şen, S., Helvacıoğlu, E., Nugay, T., & Nugay, N. (2014). Tuning of heavy metal removal efficiency from water via micro algae/hydrogel composites. e-Polymers, 13. https://doi.org/10.1515/epoly-2013-0116
  6. Bilgic, M. B., Kaya, K., Orakdogen, N., & Yagci, Y. (2022). Light-induced synthesis and characterization of “Clickable” polyacrylamide hydrogels. European Polymer Journal, 167, 111062. https://doi.org/https://doi.org/10.1016/j.eurpolymj.2022.111062
  7. Cao, H., Duan, L., Zhang, Y., Cao, J., & Zhang, K. (2021). Current hydrogel advances in physicochemical and biological response-driven biomedical application diversity. Signal Transduction and Targeted Therapy, 6(1), 426. https://doi.org/10.1038/s41392-021-00830-x
  8. Ceylan, D., Ozmen, M. M., & Okay, O. (2006). Swelling–deswelling kinetics of ionic poly(acrylamide) hydrogels and cryogels. Journal of Applied Polymer Science, 99(1), 319-325. https://doi.org/https://doi.org/10.1002/app.22023
  9. Ciftci, M., Kahveci, M. U., Yagci, Y., Allonas, X., Ley, C., & Tar, H. (2012). A simple route to synthesis of branched and cross-linked polymers with clickable moieties by photopolymerization [10.1039/C2CC35607D]. Chemical Communications, 48(82), 10252-10254. https://doi.org/10.1039/C2CC35607D
  10. Dsouza, A., Constantinidou, C., Arvanitis, T. N., Haddleton, D. M., Charmet, J., & Hand, R. A. (2022). Multifunctional Composite Hydrogels for Bacterial Capture, Growth/Elimination, and Sensing Applications. ACS Appl Mater Interfaces, 14(42), 47323-47344. https://doi.org/10.1021/acsami.2c08582
  11. Engel, E. R., & Scott, J. L. (2020). Advances in the green chemistry of coordination polymer materials [10.1039/D0GC01074J]. Green Chemistry, 22(12), 3693-3715. https://doi.org/10.1039/D0GC01074J
  12. Gün Gök, Z., & Inal, M. (2022). Effective Removing of Remazol Black B by the Polyacrylamide Cryogels Modified with Polyethyleneimine. Journal of Polymers and the Environment, 30. https://doi.org/10.1007/s10924-021-02187-2
  13. Heo, J., & Crooks, R. M. (2005). Microfluidic biosensor based on an array of hydrogel-entrapped enzymes. Anal Chem, 77(21), 6843-6851. https://doi.org/10.1021/ac0507993
  14. Hou, X., Sun, J., Lian, M., Peng, Y., Jiang, D., Xu, M., Li, B., & Xu, Q. (2023). Emerging Synthetic Methods and Applications of MOF-Based Gels in Supercapacitors, Water Treatment, Catalysis, Adsorption, and Energy Storage. Macromolecular Materials and Engineering, 308(2), 2200469. https://doi.org/https://doi.org/10.1002/mame.202200469
  15. Kalayci, K., Frisch, H., Truong, V. X., & Barner-Kowollik, C. (2020). Green light triggered [2+2] cycloaddition of halochromic styrylquinoxaline—controlling photoreactivity by pH. Nature Communications, 11(1), 4193. https://doi.org/10.1038/s41467-020-18057-9
  16. Kaya, K. (2023). A green and fast method for PEDOT: Photoinduced step-growth polymerization of EDOT. Reactive and Functional Polymers, 182, 105464. https://doi.org/https://doi.org/10.1016/j.reactfunctpolym.2022.105464
  17. Kocaarslan, A., Kaya, K., Jockusch, S., & Yagci, Y. (2022). Phenacyl Bromide as a Single-Component Photoinitiator: Photoinduced Step-Growth Polymerization of N-Methylpyrrole and N-Methylindole. Angewandte Chemie International Edition, 61(36), e202208845. https://doi.org/https://doi.org/10.1002/anie.202208845
  18. Lim, J. Y. C., Goh, L., Otake, K.-i., Goh, S. S., Loh, X. J., & Kitagawa, S. (2023). Biomedically-relevant metal organic framework-hydrogel composites [10.1039/D2BM01906J]. Biomaterials Science, 11(8), 2661-2677. https://doi.org/10.1039/D2BM01906J
  19. Liu, S., Brunel, D., Noirbent, G., Mau, A., Chen, H., Morlet-Savary, F., Graff, B., Gigmes, D., Xiao, P., Dumur, F., & Lalevée, J. (2021). New multifunctional benzophenone-based photoinitiators with high migration stability and their applications in 3D printing [10.1039/D0QM00885K]. Materials Chemistry Frontiers, 5(4), 1982-1994. https://doi.org/10.1039/D0QM00885K
  20. Murtezi, E., Ciftci, M., & Yagci, Y. (2014). Synthesis of Clickable Hydrogels and Linear Polymers by Type II Photoinitiation. Polymer International, 64. https://doi.org/10.1002/pi.4786
  21. Nguyen, K. T., & West, J. L. (2002). Photopolymerizable hydrogels for tissue engineering applications. Biomaterials, 23(22), 4307-4314. https://doi.org/https://doi.org/10.1016/S0142-9612(02)00175-8
  22. Norioka, C., Inamoto, Y., Hajime, C., Kawamura, A., & Miyata, T. (2021). A universal method to easily design tough and stretchable hydrogels. NPG Asia Materials, 13(1), 34. https://doi.org/10.1038/s41427-021-00302-2
  23. Orakdogen, N., & Okay, O. (2006). Reentrant conformation transition in poly(N,N-dimethylacrylamide) hydrogels in water–organic solvent mixtures. Polymer, 47(2), 561-568. https://doi.org/https://doi.org/10.1016/j.polymer.2005.11.066
  24. Qin, H., Li, F., Wang, D., Lin, H., & Jin, J. (2016). Organized Molecular Interface-Induced Noncrystallizable Polymer Ultrathin Nanosheets with Ordered Chain Alignment. ACS Nano, 10(1), 948-956. https://doi.org/10.1021/acsnano.5b06149
  25. Samav, Y., Demir, S., Solmaz, G., Tuncer, C., & Erer, H. (2023). Construction of Novel Co(II) Coordination Polymers-Hydrogel Composites for Dye Adsorption. Journal of Inorganic and Organometallic Polymers and Materials, 1-12. https://doi.org/10.1007/s10904-023-02882-8
  26. Sanchez-Rexach, E., Johnston, T. G., Jehanno, C., Sardon, H., & Nelson, A. (2020). Sustainable Materials and Chemical Processes for Additive Manufacturing. Chemistry of Materials, 32(17), 7105-7119. https://doi.org/10.1021/acs.chemmater.0c02008
  27. Soto-Quintero, A., Romo-Uribe, Á., Bermúdez-Morales, V. H., Quijada-Garrido, I., & Guarrotxena, N. (2017). 3D-Hydrogel Based Polymeric Nanoreactors for Silver Nano-Antimicrobial Composites Generation. Nanomaterials (Basel), 7(8). https://doi.org/10.3390/nano7080209
  28. Sun, W., Zhao, X., Webb, E., Xu, G., Zhang, W., & Wang, Y. (2023). Advances in metal–organic framework-based hydrogel materials: preparation, properties and applications [10.1039/D2TA08841J]. Journal of Materials Chemistry A, 11(5), 2092-2127. https://doi.org/10.1039/D2TA08841J
  29. Tabak, T., Kaya, K., Isci, R., Ozturk, T., Yagci, Y., & Kiskan, B. Combining Step-Growth and Chain-Growth Polymerizations in One Pot: Light-Induced Fabrication of Conductive Nanoporous PEDOT-PCL Scaffold. Macromolecular rapid communications, n/a(n/a), 2300455. https://doi.org/https://doi.org/10.1002/marc.202300455
  30. Taghipour, Y. D., Hokmabad, V. R., Del Bakhshayesh, A. R., Asadi, N., Salehi, R., & Nasrabadi, H. T. (2020). The Application of Hydrogels Based on Natural Polymers for Tissue Engineering. Curr Med Chem, 27(16), 2658-2680. https://doi.org/10.2174/0929867326666190711103956
  31. Tao, B., Lin, C., Deng, Y., Yuan, Z., Shen, X., Chen, M., He, Y., Peng, Z., Hu, Y., & Cai, K. (2019). Copper-nanoparticle-embedded hydrogel for killing bacteria and promoting wound healing with photothermal therapy. J Mater Chem B, 7(15), 2534-2548. https://doi.org/10.1039/c8tb03272f
  32. Terzyk, A. P., Bieniek, A., Bolibok, P., Wiśniewski, M., Ferrer, P., da Silva, I., & Kowalczyk, P. (2019). Stability of coordination polymers in water: state of the art and towards a methodology for nonporous materials. Adsorption, 25(1), 1-11. https://doi.org/10.1007/s10450-018-9991-9
  33. Uygun, M., Kahveci, M. U., Odaci, D., Timur, S., & Yagci, Y. (2009). Antibacterial Acrylamide Hydrogels Containing Silver Nanoparticles by Simultaneous Photoinduced Free Radical Polymerization and Electron Transfer Processes. Macromolecular Chemistry and Physics, 210(21), 1867-1875. https://doi.org/https://doi.org/10.1002/macp.200900296
  34. Vigata, M., Meinert, C., Hutmacher, D. W., & Bock, N. (2020). Hydrogels as Drug Delivery Systems: A Review of Current Characterization and Evaluation Techniques. Pharmaceutics, 12(12). https://doi.org/10.3390/pharmaceutics12121188
  35. Wang, Y., Borthwell, R. M., Hori, K., Clarkson, S., Blumstein, G., Park, H., Hart, C. M., Hamad, C. D., Francis, K. P., Bernthal, N. M., & Phillips, K. S. (2022). In vitro and in vivo methods to study bacterial colonization of hydrogel dermal fillers. J Biomed Mater Res B Appl Biomater, 110(8), 1932-1941. https://doi.org/10.1002/jbm.b.35050
  36. Xiao, J., Chen, S., Yi, J., Zhang, H., & Ameer, G. A. (2017). A Cooperative Copper Metal-Organic Framework-Hydrogel System Improves Wound Healing in Diabetes. Adv Funct Mater, 27(1). https://doi.org/10.1002/adfm.201604872
  37. Yilmaz, G., Kahveci, M., & Yagci, Y. (2011). A One Pot, One Step Method for the Preparation of Clickable Hydrogels by Photoinitiated Polymerization. Macromolecular rapid communications, 32, 1906-1909. https://doi.org/10.1002/marc.201100470
  38. You, S., Xiang, Y., Qi, X., Mao, R., Cai, E., Lan, Y., Lu, H., Shen, J., & Deng, H. (2022). Harnessing a biopolymer hydrogel reinforced by copper/tannic acid nanosheets for treating bacteria-infected diabetic wounds. Materials Today Advances, 15, 100271. https://doi.org/https://doi.org/10.1016/j.mtadv.2022.100271
  39. Yu, S., Duan, Y., Zuo, X., Chen, X., Mao, Z., & Gao, C. (2018). Mediating the invasion of smooth muscle cells into a cell-responsive hydrogel under the existence of immune cells. Biomaterials, 180, 193-205. https://doi.org/https://doi.org/10.1016/j.biomaterials.2018.07.022
  40. Zhan, Y., Fu, W., Xing, Y., Ma, X., & Chen, C. (2021). Advances in versatile anti-swelling polymer hydrogels. Materials Science and Engineering: C, 127, 112208. https://doi.org/https://doi.org/10.1016/j.msec.2021.112208
  41. Zhang, K., Shi, Z., Zhou, J., Xing, Q., Ma, S., Li, Q., Zhang, Y., Yao, M., Wang, X., Li, Q., Li, J., & Guan, F. (2018). Potential application of an injectable hydrogel scaffold loaded with mesenchymal stem cells for treating traumatic brain injury [10.1039/C7TB03213G]. Journal of Materials Chemistry B, 6(19), 2982-2992. https://doi.org/10.1039/C7TB03213G
  42. Zhou, W., Zi, L., Cen, Y., You, C., & Tian, M. (2020). Copper Sulfide Nanoparticles-Incorporated Hyaluronic Acid Injectable Hydrogel With Enhanced Angiogenesis to Promote Wound Healing. Front Bioeng Biotechnol, 8, 417. https://doi.org/10.3389/fbioe.2020.00417
  43. Zhu, X., Chen, Y., Xie, R., Zhong, H., Zhao, W., Liu, Y., & Yang, H. (2021). Rapid Gelling of Guar Gum Hydrogel Stabilized by Copper Hydroxide Nanoclusters for Efficient Removal of Heavy Metal and Supercapacitors. Front Chem, 9, 794755. https://doi.org/10.3389/fchem.2021.794755