Vol. 55 No. sp. is. 1 (2023): Vol. 55, special issue 1, 2023: In memoriam to the late Prof. Dr. Yusuf YAĞCI (1952-2023)
ITU ARI-A Natural Sciences

Perspectives on the Curing of Benzoxazine Resins

Barış Kışkan
Istanbul Technical University, Department of Chemistry, 34469, Maslak, Sarıyer, Istanbul

Published 02/24/2024

Keywords

  • Benzoxazines,
  • polybenzoxazines,
  • ring-opening polymerization,
  • catalysis

How to Cite

Kışkan, Barış, and Füsun Şeyma Güngör. 2024. “Perspectives on the Curing of Benzoxazine Resins”. ITU ARI Bulletin of Istanbul Technical University 55 (sp. is. 1):37-44. https://ari.itu.edu.tr/index.php/ituari/article/view/73.

Abstract

Benzoxazines are a class of heterocyclic compounds that can be polymerized to form polybenzoxazines, which have excellent properties such as thermal stability, flame retardance, low shrinkage, and chemical resistance. The curing of benzoxazines involves a thermal cationic ring-opening polymerization, which can be influenced by various factors such as catalysts, co-monomers, temperature, and time. In general, the curing temperatures of benzoxazines are considered as high and lie between 180 ⁰C and 260 ⁰C depending on the monomer structure. This nature of benzoxazine resins could limit their wider applications in different areas. Therefore, lowering the curing temperatures could play a critical role in the benzoxazine resin chemistry. This review summarizes the recent advances in the understanding of the curing mechanisms of benzoxazine resins, with a focus on the factors influencing the curing kinetics and the resulting material properties.

References

  1. Agag, T., Arza, C. R., Maurer, F. H. J., & Ishida, H. (2010). Primary Amine-Functional Benzoxazine Monomers and Their Use for Amide-Containing Monomeric Benzoxazines. Macromolecules, 43(6), 2748-2758. https://doi.org/DOI: 10.1021/ma902556k
  2. Akay, S., Kayan, B., Kalderis, D., Arslan, M., Yagci, Y., & Kiskan, B. (2017). Poly(benzoxazine‐co‐sulfur): An efficient sorbent for mercury removal from aqueous solution. Journal of Applied Polymer Science, 134(38), 45306-45306.
  3. Akkus, B., Kiskan, B., & Yagci, Y. (2019). Counterion Effect of Amine Salts on Ring-Opening Polymerization of 1,3-Benzoxazines. Macromolecular Chemistry and Physics, 220(1), 1800268. https://doi.org/DOI:10.1002/macp.201800268
  4. Akkus, B., Kiskan, B., & Yagci, Y. (2020). Cyanuric Chloride as aPotent Catalyst for the Reduction of Curing Temperature of Benzoxazines [10.1039/C9PY01631G]. Polymer Chemistry, 11(5), 1025-1032. https://doi.org/DOI: 10.1039/C9PY01631G
  5. Andreu, R., Reina, J. A., & Ronda, J. C. (2008). Carboxylic Acid-Containing Benzoxazines as Efficient Catalysts in the Thermal Polymerization of Benzoxazines. Journal of Polymer Science, Part A: Polymer Chemistry, 46(18), 6091-6101. https://doi.org/DOI: 10.1002/pola.22921
  6. Arslan, M., Kiskan, B., & Yagci, Y. (2016). Combining Elemental Sulfur with Polybenzoxazines via Inverse Vulcanization. Macromolecules, 49(3), 767-773. https://doi.org/DOI: 10.1021/acs.macromol.5b02791
  7. Bektas, S., Kiskan, B., Orakdogen, N., & Yagci, Y. (2015). Synthesis and Properties of Organo-Gels by Thiol-Benzoxazine Chemistry. Polymer, 75, 44-50. https://doi.org/DOI: 10.1016/j.polymer.2015.08.026
  8. Beyazkilic, Z., Kahveci, M., Aydogan, B., Kiskan, B., & Yagci, Y. (2012). Synthesis of polybenzoxazine precursors using thiols: Simultaneous thiol–ene and ring‐opening reactions. Journal of Polymer Science Part A: Polymer Chemistry, 50(19), 4029-4036. https://doi.org/DOI: 10.1002/pola.26202
  9. Burke, W. J. (1949). 3,4-Dihydro-1,3,2H-Benzoxazines. Reaction of p-Substituted Phenols with N,N-Dimethylolamines. Journal of the American Chemical Society, 71(2), 609-612. https://doi.org/DOI:10.1021/ja01170a063
  10. Burke, W. J., Bishop, J. L., Glennie, E. L. M., & Bauer, W. N. (1965). A New Aminoalkylation Reaction. Condensation of Phenols with Dihydro-1,3-aroxazines1. The Journal of Organic Chemistry, 30(10), 3423-3427. https://doi.org/10.1021/jo01021a037
  11. Burke, W. J., Kolbezen, M. J., & Stephens, C. W. (1952). Condensation of Naphthols with Formaldehyde and Primary Amines. Journal of the American Chemical Society, 74(14), 3601-3605. http://pubs3.acs.org/acs/journals/doilookup?in_doi=10.1021/ja01134a039
  12. Burke, W. J., Murdock, K. C., & Ec, G. (1954). Condensation of Hydroxyaromatic Compounds with Formaldehyde and Primary Aromatic Amines. Journal of the American Chemical Society, 76(6), 1677-1679. https://doi.org/10.1021/ja01635a065
  13. Burke, W. J., & Weatherbee, C. (1950). 3,4-Dihydro-1,3,2H-Benzoxazines. Reaction of Polyhydroxybenzenes with N-Methylolamines. Journal of the American Chemical Society, 72(10), 4691-4694. http://pubs3.acs.org/acs/journals/doilookup?in_doi=10.1021/ja01166a094
  14. Chutayothin, P., & Ishida, H. (2010). Cationic Ring-Opening Polymerization of 1,3-Benzoxazines: Mechanistic Study Using Model Compounds. Macromolecules, 43(10), 4562-4572. https://doi.org/DOI: 10.1021/ma901743h
  15. Coban, Z. G., Yagci, Y., & Kiskan, B. (2021). Catalyzing the Ring-Opening Polymerization of 1,3-Benzoxazines via Thioamide from Renewable Sources. ACS Applied Polymer Materials, 3(8), 4203-4212. https://doi.org/10.1021/acsapm.1c00637
  16. Deliballi, Z., Kiskan, B., & Yagci, Y. (2021). Light induced crosslinking of main chain polybenzoxazines [10.1039/D1PY01080H]. Polymer Chemistry, 12(40), 5781-5786. https://doi.org/10.1039/D1PY01080H
  17. Dunkers, J., & Ishida, H. (1999). Reaction of Benzoxazine-Based Phenolic Resins with Strong and Weak Carboxylic Acids and Phenols as Catalysts. Journal of Polymer Science, Part A: Polymer Chemistry, 37(13), 1913-1921. https://doi.org/DOI: 10.1002/(SICI)1099-0518(19990701)37:13<1913::AID-POLA4>3.0.CO;2-E
  18. Espinosa, M. A., Cádiz, V., & Galià, M. (2003). Synthesis and characterization of benzoxazine-based phenolic resins: Crosslinking study. Journal of Applied Polymer Science, 90(2), 470-481. https://doi.org/https://doi.org/10.1002/app.12678
  19. Furuncuoğlu Özaltın, T., Catak, S., Kiskan, B., Yagci, Y., & Aviyente, V. (2018). Rationalizing the regioselectivity of cationic ring-opening polymerization of benzoxazines. European Polymer Journal, 105, 61-67. https://doi.org/https://doi.org/10.1016/j.eurpolymj.2018.05.024
  20. Gaines, J. R., & Swanson, A. W. (1971). Preparation of 3,4-dihydro-2H-1,3-benzoxazines. Journal of Heterocyclic Chemistry, 8(2), 249-251. https://doi.org/doi:10.1002/jhet.5570080212
  21. Ghosh, N., Kiskan, B., & Yagci, Y. (2007). Polybenzoxazines—New High Performance Thermosetting Resins: Synthesis and Properties. Progress in Polymer Science, 32(11), 1344-1391. https://doi.org/DOI: 10.1016/j.progpolymsci.2007.07.002
  22. Gorodisher, I., DeVoe, R. J., & Webb, R. J. (2011). Chapter 11 - Catalytic Opening of Lateral Benzoxazine Rings by Thiols A2. In T. Agag & H. Ishida (Eds.), Handbook of Benzoxazine Resins (pp. 211-234). Elsevier. https://doi.org/DOI: 10.1016/B978-0-444-53790-4.00056-4
  23. Gorodisher, I., Webb, R. J., & DeVoe, R. J. (2013). Benzoxazine-Thiol Adducts US 8383706 B2). https://www.google.com/patents/US8389758
  24. Hamerton, I., McNamara, L. T., Howlin, B. J., Smith, P. A., Cross, P., & Ward, S. (2013). Examining the Initiation of the Polymerization Mechanism and Network Development in Aromatic Polybenzoxazines. Macromolecules, 46(13), 5117-5132. https://doi.org/DOI: 10.1021/ma401014h
  25. Higginbottom, H. P. (1985). Polymerizable compositions comprising polyamines and poly(dihydrobenzoxazines) US Pat. 4501864A). http://www.google.com/patents/US4501864
  26. Holly, F. W., & Cope, A. C. (1944). Condensation Products of Aldehydes and Ketones with o-Aminobenzyl Alcohol and o-Hydroxybenzylamine. Journal of the American Chemical Society, 66(11), 1875-1879. https://doi.org/10.1021/ja01239a022
  27. Ishida, H., & Agag, T. (2011). Handbook of Benzoxazine Resins [Book]. Elsevier. https://doi.org/DOI: 10.1016/C2010-0-66598-9
  28. Ishida, H., & Rodriguez, Y. (1995). Catalyzing the Curing Reaction of a New Benzoxazine-Based Phenolic Resin. Journal of Applied Polymer Science, 58(10), 1751-1760. ://A1995TE63800013
  29. Jubsilp, C., Damrongsakkul, S., Takeichi, T., & Rimdusit, S. (2006). Curing kinetics of arylamine-based polyfunctional benzoxazine resins by dynamic differential scanning calorimetry. Thermochimica Acta, 447(2), 131-140. https://doi.org/https://doi.org/10.1016/j.tca.2006.05.008
  30. Kasapoglu, F., Cianga, I., Yagci, Y., & Takeichi, T. (2003). Photoinitiated cationic polymerization of monofunctional benzoxazine. Journal of Polymer Science Part A: Polymer Chemistry, 41(21), 3320-3328. https://doi.org/https://doi.org/10.1002/pola.10913
  31. Kawaguchi, A. W., Sudo, A., & Endo, T. (2012). Polymerization–Depolymerization System Based on Reversible Addition-Dissociation Reaction of 1,3-Benzoxazine with Thiol. ACS Macro Letters, 2(1), 1-4. https://doi.org/DOI: 10.1021/mz3005296
  32. Kawaguchi, A. W., Sudo, A., & Endo, T. (2012). Synthesis of Highly Polymerizable 1,3-Benzoxazine Assisted by Phenyl Thio Ether and Hydroxyl Moieties. Journal of Polymer Science, Part A: Polymer Chemistry, 50(8), 1457-1461. https://doi.org/DOI: 10.1002/pola.25923
  33. Kawaguchi, A. W., Sudo, A., & Endo, T. (2014). Thiol-functionalized 1,3-benzoxazine: Preparation and its use as a precursor for highly polymerizable benzoxazine monomers bearing sulfide moiety. Journal of Polymer Science Part A: Polymer Chemistry, 52(10), 1448-1457. https://doi.org/https://doi.org/10.1002/pola.27131
  34. Kaya, G., Kiskan, B., & Yagci, Y. (2018). Phenolic Naphthoxazines as Curing Promoters for Benzoxazines. Macromolecules, 51(5), 1688-1695. https://doi.org/DOI: 10.1021/acs.macromol.8b00218
  35. Kim, H. D., & Ishida, H. (2001). Study on the chemical stability of benzoxazine-based phenolic resins in carboxylic acids. Journal of Applied Polymer Science, 79(7), 1207-1219. ://000166220400008
  36. Kim, H. J., Brunovska, Z., & Ishida, H. (1999). Molecular characterization of the polymerization of acetylene-functional benzoxazine resins. Polymer, 40(7), 1815-1822. ://000078048400021
  37. Kiskan, B., & Yagci, Y. (2020). The Journey of Phenolics from the First Spark to Advanced Materials. Israel Journal of Chemistry, 60(1-2), 20-32. https://doi.org/DOI: 10.1002/ijch.201900086
  38. Kocaarslan, A., Kiskan, B., & Yagci, Y. (2017). Ammonium Salt Catalyzed Ring-Opening Polymerization of 1,3-Benzoxazines. Polymer, 122, 340-346. https://doi.org/DOI: 10.1016/j.polymer.2017.06.077
  39. Kudoh, R., Sudo, A., & Endo, T. (2010). A Highly Reactive Benzoxazine Monomer, 1-(2-Hydroxyethyl)-1,3-Benzoxazine: Activation of Benzoxazine by Neighboring Group Participation of Hydroxyl Group. Macromolecules, 43(3), 1185-1187. https://doi.org/DOI: 10.1021/ma902416h
  40. Liu, C., Shen, D., Sebastián, R. M., Marquet, J., & Schönfeld, R. (2011). Mechanistic Studies on Ring-Opening Polymerization of Benzoxazines: A Mechanistically Based Catalyst Design. Macromolecules, 44(12), 4616-4622. https://doi.org/DOI: 10.1021/ma2007893
  41. Liu, C., Shen, D., Sebastián, R. M., Marquet, J., & Schönfeld, R. (2013). Catalyst Effects on the Ring-Opening Polymerization of 1,3-Benzoxazine and on the Polymer Structure. Polymer (United Kingdom), 54(12), 2873-2878. https://doi.org/DOI: 10.1016/j.polymer.2013.03.063
  42. Liu, C., Shen, D., Sebastián, R. M. a., Marquet, J., & Schönfeld, R. (2011). Mechanistic Studies on Ring-Opening Polymerization of Benzoxazines: A Mechanistically Based Catalyst Design. Macromolecules, 44(12), 4616-4622. https://doi.org/DOI: 10.1021/ma2007893
  43. Lochab, B., Monisha, M., Amarnath, N., Sharma, P., Mukherjee, S., & Ishida, H. (2021). Review on the Accelerated and Low-Temperature Polymerization of Benzoxazine Resins: Addition Polymerizable Sustainable Polymers. Polymers, 13(8), 1260. https://www.mdpi.com/2073-4360/13/8/1260
  44. Nair, C. P. R. (2004). Advances in Addition-Cure Phenolic Resins. Progress in Polymer Science, 29(5), 401-498. https://doi.org/DOI: 10.1016/j.progpolymsci.2004.01.004
  45. Ning, X., & Ishida, H. (1994). Phenolic materials via ring‐opening polymerization: Synthesis and characterization of bisphenol‐A based benzoxazines and their polymers. Journal of Polymer Science Part A: Polymer Chemistry, 32(6), 1121-1129. https://doi.org/DOI:10.1002/pola.1994.080320614
  46. Oie, H., Sudo, A., & Endo, T. (2010). Acceleration effect of N-allyl group on thermally induced ring-opening polymerization of 1,3-benzoxazine. Journal of Polymer Science Part A: Polymer Chemistry, 48(23), 5357-5363. https://doi.org/10.1002/pola.24338
  47. Pei, L., Zhao, S., Li, H., Zhang, X., Fan, X., Wang, W., . . . Wang, Z. (2021). Preparation of low temperature cure polybenzoxazine coating with enhanced thermal stability and mechanical properties by combustion synthesis approach. Polymer, 220, 123573. https://doi.org/https://doi.org/10.1016/j.polymer.2021.123573
  48. Pilato, L. (2010). Phenolic Resins: A Century of Progress (L. Pilato, Ed.). Springer-Verlag https://doi.org/DOI: 10.1007/978-3-642-04714-5
  49. Salnikov, D., Gorodisher, I., & Webb, R. J. (2014). Polybenzoxazine composition. In: WO 2014052255 A1.
  50. Schreiber H. (1973). German Patent 2 255 504.
  51. Shukla, S., Ghosh, A., Roy, P. K., Mitra, S., & Lochab, B. (2016). Cardanol benzoxazines – A sustainable linker for elemental sulphur based copolymers via inverse vulcanisation. Polymer, 99, 349-357. https://doi.org/https://doi.org/10.1016/j.polymer.2016.07.037
  52. Sudo, A., Hirayama, S., & Endo, T. (2010). Highly efficient catalysts‐acetylacetonato complexes of transition metals in the 4th period for ring‐opening polymerization of 1,3‐benzoxazine. Journal of Polymer Science Part A: Polymer Chemistry, 48(2), 479-484. https://doi.org/DOI:10.1002/pola.23810
  53. Sun, J., Wei, W., Xu, Y., Qu, J., Liu, X., & Endo, T. (2015). A Curing System of Benzoxazine with Amine: Reactivity, Reaction Mechanism and Material Properties [10.1039/C4RA16582A]. RSC Advances, 5(25), 19048-19057. https://doi.org/DOI: 10.1039/C4RA16582A
  54. Urbaniak, T., Soto, M., Liebeke, M., & Koschek, K. (2017). Insight into the Mechanism of Reversible Ring-Opening of 1,3-Benzoxazine with Thiols. The Journal of Organic Chemistry, 82(8), 4050-4055. https://doi.org/DOI: 10.1021/acs.joc.6b02727
  55. Wang, P., Liu, M., & Ran, Q. (2020). The study on curing and weight-loss mechanisms of benzoxazine during thermal curing process. Polymer Degradation and Stability, 179, 109279. https://doi.org/https://doi.org/10.1016/j.polymdegradstab.2020.109279
  56. Yagci, Y., Kiskan, B., & Ghosh, N. N. (2009). Recent Advancement on Polybenzoxazine-A Newly Developed High Performance Thermoset. Journal of Polymer Science, Part A: Polymer Chemistry, 47(21), 5565-5576. https://doi.org/10.1002/pola.23597
  57. Zakzeski, J., Bruijnincx, P. C. A., Jongerius, A. L., & Weckhuysen, B. M. (2010). The Catalytic Valorization of Lignin for the Production of Renewable Chemicals. Chemical Reviews, 110(6), 3552-3599. https://doi.org/10.1021/cr900354u
  58. Zong, J., & Ran, Q. (2019). Ring Opening Reaction of 3,4-Dihydro-2H-1,3-Benzoxazine with Amines at Room Temperature. ChemistrySelect, 4(22), 6687-6696. https://doi.org/https://doi.org/10.1002/slct.201901447
  59. Zúñiga, C., Larrechi, M. S., Lligadas, G., Ronda, J. C., Galià, M., & Cádiz, V. (2011). Polybenzoxazines from renewable diphenolic acid. Journal of Polymer Science Part A: Polymer Chemistry, 49(5), 1219-1227. https://doi.org/DOI: 10.1002/pola.24541