Vol. 55 No. sp. is. 1 (2023): Vol. 55, special issue 1, 2023: In memoriam to the late Prof. Dr. Yusuf YAĞCI (1952-2023)
ITU ARI-A Natural Sciences

Strecker 3-Component Reaction for Post-Polymerization Modification of Pendant Aldehyde Functional Polymers

Hakan Durmaz
Istanbul Technical University
Cover image of ITU ARI

Published 02/13/2024

Keywords

  • Post-polymerization modification,
  • Strecker 3-component reaction,
  • aldehyde-functional polymers

How to Cite

Ersin, Mine Aybike, Emre Akar, Dilhan Kandemir, Serter Luleburgaz, Volkan Kumbaraci, Ufuk Saim Gunay, and Hakan Durmaz. 2024. “Strecker 3-Component Reaction for Post-Polymerization Modification of Pendant Aldehyde Functional Polymers”. ITU ARI Bulletin of Istanbul Technical University 55 (sp. is. 1):29-36. https://ari.itu.edu.tr/index.php/ituari/article/view/74.

Abstract

Aldehydes have always been useful building blocks in organic chemistry due to their high and diverse reactivity. They also offer easy access to various other functionalities and allow reactions to be performed under mild conditions. This distinguished versatility has allowed aldehyde-bearing polymers to be a good platform for post-polymerization modification reactions to prepare functional polymers. This study exploited the Strecker 3-component reaction to obtain polymers with α-aminonitrile groups at the side chain for the first time. For this purpose, firstly, an aldehyde-functional polymer was synthesized from 4-formylphenyl methacrylate through free radical polymerization and then modified with amine compounds in the presence of trimethylsilyl cyanide and a catalytic amount of p-toluenesulfonic acid at room temperature. The spectroscopic analyses confirmed the successful synthesis of corresponding α-aminonitriles.

References

  1. Akar, E., Kandemir, D., Luleburgaz, S., Kumbaraci, V., & Durmaz, H. (2022). Efficient Post-Polymerization modification of pendant aldehyde functional polymer via reductive etherification reaction. European Polymer Journal, 177, 111440. https://doi.org/10.1016/j.eurpolymj.2022.111440.
  2. Blasco, E., Sims, M.B., Goldmann, A.S., Sumerlin, B.S., & Barner-Kowollik, C. (2017). 50th Anniversary perspective: Polymer functionalization Macromolecules, 50 (14), 5215-5252. 10.1021/acs.macromol.7b00465.
  3. Cioc, R.C., Ruijter, E. & Orru, R.V.A. (2014). Multicomponent reactions: advanced tools for sustainable organic synthesis, Green Chem., 16, 2958-2975. https://doi.org/10.1039/C4GC00013G.
  4. Gao, Y., & Lam, Y. (2008). Polymer‐Supported N‐Phenylsulfonyloxaziridine (Davis Reagent): A Versatile Oxidant. Advanced Synthesis & Catalysis, 350(18), 2937-2946. https://doi.org/10.1002/adsc.200800500.
  5. García-Acosta, B., García, F., García, J. M., Martínez-Máñez, R., Sancenón, F., San-José, N., & Soto, J. (2007). Chromogenic signaling of hydrogen carbonate anion with pyrylium-containing polymers. Organic Letters, 9(13), 2429-2432. https://doi.org/10.1021/ol0705191.
  6. Geng, Z., Shin, J.J., Xi, Y., & Hawker, C.J. (2021). Click chemistry strategies for the accelerated synthesis of functional macromolecules J. of Polym. Sci., 59 (11), 963-1042. 10.1002/pol.20210126.
  7. Günay, K.A., Theato, P., & Klok, H.A. (2013). Standing on the shoulders of Hermann Staudinger: Post-polymerization modification from past to present J. Polym. Sci., Part A: Polym. Chem., 51 (1), 1-28. 10.1002/pola.26333.
  8. Harusawa, S., & Shioiri, T. (2016). Diethyl phosphorocyanidate (DEPC): a versatile reagent for organic synthesis. Tetrahedron, 72(50), 8125-8200. https://doi.org/10.1016/j.tet.2016.09.070.
  9. Ishitani, H., Komiyama, S., & Kobayashi, S. (1998). Catalytic, Enantioselective Synthesis of α‐Aminonitriles with a Novel Zirconium Catalyst. Angewandte Chemie International Edition, 37(22), 3186-3188. https://doi.org/10.1002/(SICI)1521-3773(19981204)37:22%3C3186::AID-ANIE3186%3E3.0.CO;2-E.
  10. Jackson, A. W., Stakes, C., & Fulton, D. A. (2011). The formation of core cross-linked star polymer and nanogel assemblies facilitated by the formation of dynamic covalent imine bonds. Polymer Chemistry, 2(11), 2500-2511. https://doi.org/10.1039/C1PY00261A
  11. Kim, J. S., Yoo, S. W., Kim, J. A., & Kim, J. H. (2012). Covalently assembled bifunctional copolymer layers as a matrix for immobilization of oligonucleotides. Bulletin of the Korean Chemical Society, 33(4), 1401-1404. http://dx.doi.org/10.5012/bkcs.2012.33.4.1401.
  12. Kouznetsov, V.V., & Galvis, C.E.P. (2018). Strecker reaction and α-amino nitriles: Recent advances in their chemistry, synthesis, and biological properties. Tetrahedron, 74(8), 773-810. https://doi.org/10.1016/j.tet.2018.01.005.
  13. Kreye, O., Tóth, T., & Meier, M. A. (2011). Introducing multicomponent reactions to polymer science: Passerini reactions of renewable monomers. Journal of the American Chemical Society, 133(6), 1790-1792. https://doi.org/10.1021/ja1113003.
  14. Kusumoto, S., Ito, S., & Nozaki, K. (2013). Direct aldol polymerization of acetaldehyde with organocatalyst/Brønsted acid systems. Asian Journal of Organic Chemistry, 2(11), 977-982. https://doi.org/10.1002/ajoc.201300134.
  15. Liu, Y., Zhang, J., Zhang, J., Pei, H., Liu, X., Jin, H., ... & Zhang, L. (2023). Strecker Reactions of Formaldehyde with TMSCN, Catalyzed by TBAF and Formic Acid: N‐Monocyanomethylation of Primary Amines. Advanced Synthesis & Catalysis, 365(1), 2-7. https://doi.org/10.1002/adsc.202200767.
  16. Maleki, A., Akhlaghi, E., & Paydar, R. (2016). Design, synthesis, characterization and catalytic performance of a new cellulose‐based magnetic nanocomposite in the one‐pot three‐component synthesis of α‐aminonitriles. Applied Organometallic Chemistry, 30(6), 382-386. https://doi.org/10.1002/aoc.3443.
  17. Nakamura, S., Sato, N., Sugimoto, M., & Toru, T. (2004). A new approach to enantioselective cyanation of imines with Et2AlCN. Tetrahedron: Asymmetry, 15(9), 1513-1516. https://doi.org/10.1016/j.tetasy.2004.03.040.
  18. Negrell, C., Voirin, C., Boutevin, B., Ladmiral, V., & Caillol, S. (2018). From monomer synthesis to polymers with pendant aldehyde groups. European Polymer Journal, 109, 544-563. https://doi.org/10.1016/j.eurpolymj.2018.10.039.
  19. Ranu, B. C., Dey, S. S., & Hajra, A. (2002). Indium trichloride catalyzed one-step synthesis of α-amino nitriles by a three-component condensation of carbonyl compounds, amines and potassium cyanide. Tetrahedron, 58(13), 2529-2532. https://doi.org/10.1016/S0040-4020(02)00132-1.
  20. Ravi Sankar, T., Abdul Ravoof, S. K., Kesavulu, K., & Venkata Ramana, P. (2008). Synthesis, Characterization and Thermal Studies of Polymer–Metal Complexes Derived from Poly (4-Methacryloxybenzaldehyde)-Divinylbenzene Benzoyl Hydrazone Resins. Designed monomers and polymers, 11(5), 457-471. https://doi.org/10.1163/156855508X328158.
  21. Reddy, C. S., & Raghu, M. (2008). p-Toluenesulfonic acid catalyzed rapid and efficient protocol for one-pot synthesis of α-amino nitriles. Indian Journal of Chemistry - Section B Organic and Medicinal Chemistry, 47(10), 1572-1577.
  22. Shen, K., Liu, X., Cai, Y., Lin, L., & Feng, X. (2009). Facile and efficient enantioselective strecker reaction of ketimines by chiral sodium phosphate. Chemistry–A European Journal, 15(24), 6008-6014. https://doi.org/10.1002/chem.200900210.
  23. Sipos, S., & Jablonkai, I. (2009). One-pot synthesis of α-aminonitriles from alkyl and aryl cyanides: a Strecker reaction via aldimine alanes. Tetrahedron Letters, 50(16), 1844-1846. https://doi.org/10.1016/j.tetlet.2009.02.004.
  24. Strecker, A. (1850). Ueber die künstliche Bildung der Milchsäure und einen neuen, dem Glycocoll homologen Körper. Justus Liebigs Annalen der Chemie, 75(1), 27-45. https://doi.org/10.1002/jlac.18500750103.
  25. Suematsu, K., Nakamura, K., & Takeda, J. (1983). Polyimine, a C= N double bond containing polymers: synthesis and properties. Polymer Journal, 15(1), 71-79. https://doi.org/10.1295/polymj.15.71.
  26. Tunca, U. (2018). Click and multicomponent reactions work together for polymer chemistry. Macromolecular Chemistry and Physics, 219(16), 1800163. https://doi.org/10.1002/macp.201800163.
  27. Xi, M., Duan, C., Chi, J., Fu, T., Su, X., & Wang, H. An Efficient and Rapid Synthesis of α-Aminonitriles via Strecker Reaction Catalyzed by Humic Acid. Chinese Journal of Organic Chemistry, 202301024. https://doi.org/10.6023/cjoc202301024.
  28. Zhi, S., Ma, X., & Zhang, W. (2019). Consecutive multicomponent reactions for the synthesis of complex molecules. Organic & Biomolecular Chemistry, 17(33), 7632-7650. https://doi.org/10.1039/C9OB00772E.