Vol. 55 No. sp. is. 1 (2023): Vol. 55, special issue 1, 2023: In memoriam to the late Prof. Dr. Yusuf YAĞCI (1952-2023)
ITU ARI-A Natural Sciences

Photo-mediated Metal-Free Atom Transfer Radical Polymerization: Mechanistic Insight and Future Perspectives

Mustafa Ciftci
Bursa Technical University

Published 04/08/2024

Keywords

  • metal-free,
  • photo-mediated,
  • ATRP

How to Cite

Ciftci, Mustafa, Omer Suat Taskin, Mehmet Atilla Tasdelen, and Cagatay Altinkok. 2024. “Photo-Mediated Metal-Free Atom Transfer Radical Polymerization: Mechanistic Insight and Future Perspectives”. ITU ARI Bulletin of Istanbul Technical University 55 (sp. is. 1):53-56. https://ari.itu.edu.tr/index.php/ituari/article/view/76.

Abstract

Among the various controlled/living radical polymerization approaches, atom transfer radical polymerization (ATRP) stands out as the most commonly employed technique. Nevertheless, the requirement for a metal catalyst poses a disadvantage and constrains its wider applicability. In light of advancements in reducing the concentration of metal catalysts, recent developments have demonstrated that ATRP can be conducted under metal-free conditions through light irradiation. Based on its unique properties, it has become a valuable tool in the design and synthesis of tailorable polymers for a wide range of applications. In this mini-review the fundamental features of the reductive and oxidative quenching mechanism of metal-free ATRP are provided in addition to the potential applications.

References

  1. Allushi, A., Kutahya, C., Aydogan, C., Kreutzer, J., Yilmaz, G., & Yagci, Y. (2017). Conventional Type II photoinitiators as activators for photoinduced metal-free atom transfer radical polymerization. Polymer Chemistry, 8(12), 1972-1977. doi: https://doi.org/10.1039/C7PY00114B.
  2. Aydogan, C., Kutahya, C., Allushi, A., Yilmaz, G., & Yagci, Y. (2017). Block copolymer synthesis in one shot: concurrent metal-free ATRP and ROP processes under sunlight. Polymer Chemistry, 8(19), 2899-2903. doi: https://doi.org/10.1039/C7PY00069C.
  3. Aydogan, C., Yilmaz, G., & Yagci, Y. (2017). Synthesis of Hyperbranched Polymers by Photoinduced Metal-Free ATRP. Macromolecules, 50(23), 9115-9120. doi: https://doi.org/10.1021/acs.macromol.7b02240.
  4. Bansal, A., Kumar, A., Kumar, P., Bojja, S., Chatterjee, A. K., Ray, S. S., & Jain, S. L. (2015). Visible light-induced surface initiated atom transfer radical polymerization of methyl methacrylate on titania/reduced graphene oxide nanocomposite. RSC Advances, 5(27), 21189-21196. doi: https://doi.org/10.1039/C4RA15615C.
  5. Boyer, C., Corrigan, N. A., Jung, K., Nguyen, D., Nguyen, T.-K., Adnan, N. N. M., . . . Yeow, J. (2016). Copper-Mediated Living Radical Polymerization (Atom Transfer Radical Polymerization and Copper(0) Mediated Polymerization): From Fundamentals to Bioapplications. Chemical Reviews, 116(4), 1803-1949. doi: https://doi.org/10.1021/acs.chemrev.5b00396.
  6. Braunecker, W. A., & Matyjaszewski, K. (2007). Controlled/living radical polymerization: Features, developments, and perspectives. Progress in Polymer Science, 32(1), 93-146. Doi: https://doi.org/10.1016/j.progpolymsci.2006.11.002.
  7. Chiefari, J., Chong, Y. K., Ercole, F., Krstina, J., Jeffery, J., Le, T. P. T., . . . Thang, S. H. (1998). Living Free-Radical Polymerization by Reversible Addition−Fragmentation Chain Transfer: The RAFT Process. Macromolecules, 31(16), 5559-5562. doi: https://doi.org/10.1021/ma9804951.
  8. de Ávila Gonçalves, S., Rodrigues, P, R. & Pioli Vieira, R. (2021). Metal-Free Organocatalyzed Atom Transfer Radical Polymerization: Synthesis, Applications, and Future Perspectives. Macromol Rapid Commun, 42(15), e2100221. doi: https://doi.org/10.1002/marc.202100221.
  9. Georges, M. K., Veregin, R. P. N., Kazmaier, P. M., & Hamer, G. K. (1993). Narrow molecular weight resins by a free-radical polymerization process. Macromolecules, 26(11), 2987-2988. doi: https://doi.org/10.1021/ma00063a054.
  10. Kato, M., Kamigaito, M., Sawamoto, M., & Higashimura, T. (1995). Polymerization of Methyl Methacrylate with the Carbon Tetrachloride/Dichlorotris-(triphenylphosphine)ruthenium(II)/ Methylaluminum Bis(2,6-di-tert-butylphenoxide) Initiating System: Possibility of Living Radical Polymerization. Macromolecules, 28(5), 1721-1723. doi: https://doi.org/10.1021/ma00109a056.
  11. Kutahya, C., Allushi, A., Isci, R., Kreutzer, J., Ozturk, T., Yilmaz, G., & Yagci, Y. (2017). Photoinduced Metal-Free Atom Transfer Radical Polymerization Using Highly Conjugated Thienothiophene Derivatives. Macromolecules, 50(17), 6903-6910. doi: https://doi.org/10.1021/acs.macromol.7b01335.
  12. Kutahya, C., Aykac, F. S., Yilmaz, G., & Yagci, Y. (2016). LED and visible light-induced metal free ATRP using reducible dyes in the presence of amines. Polymer Chemistry, 7(39), 6094-6098. doi: https://doi.org/10.1039/C6PY01417H.
  13. Kütahya, C., Schmitz, C., Strehmel, V., Yagci, Y., & Strehmel, B. (2018). Near-Infrared Sensitized Photoinduced Atom-Transfer Radical Polymerization (ATRP) with a Copper(II) Catalyst Concentration in the ppm Range. Angewandte Chemie International Edition, 57(26), 7898-7902. doi: https://doi.org/10.1002/anie.201802964.
  14. Ma, Q., Song, J., Zhang, X., Jiang, Y., Ji, L., & Liao, S. (2021). Metal-free atom transfer radical polymerization with ppm catalyst loading under sunlight. Nature Communications, 12(1), 429. doi: https://doi.org/10.1038/s41467-020-20645-8.
  15. Miyake, G. M., & Theriot, J. C. (2014). Perylene as an Organic Photocatalyst for the Radical Polymerization of Functionalized Vinyl Monomers through Oxidative Quenching with Alkyl Bromides and Visible Light. Macromolecules, 47(23), 8255-8261. doi: https://doi.org/10.1021/ma502044f.
  16. Pan, X., Tasdelen, M. A., Laun, J., Junkers, T., Yagci, Y., & Matyjaszewski, K. (2016). Photomediated controlled radical polymerization. Progress in Polymer Science, 62, 73-125. doi: https://doi.org/10.1016/j.progpolymsci.2016.06.005.
  17. Park, G. S., Back, J., Choi, E. M., Lee, E., & Son, K.-s. (2019). Visible light-mediated metal-free atom transfer radical polymerization with N-trifluoromethylphenyl phenoxazines. European Polymer Journal, 117, 347-352. doi: https://doi.org/10.1016/j.eurpolymj.2019.05.023.
  18. Taskin, O. S., Yilmaz, G., Tasdelen, M. A., & Yagci, Y. (2014). Photoinduced reverse atom transfer radical polymerization of methyl methacrylate using camphorquinone/benzhydrol system. Polymer International, 63(5), 902-907. doi: https://doi.org/10.1002/pi.4573.
  19. Theriot, J. C., McCarthy, B. G., Lim, C.-H., & Miyake, G. M. (2017). Organocatalyzed Atom Transfer Radical Polymerization: Perspectives on Catalyst Design and Performance. Macromolecular Rapid Communications, 38(13), 1700040. Doi: https://doi.org/10.1002/marc.201700040.
  20. Wang, J.-S., & Matyjaszewski, K. (1995). Controlled/"living" radical polymerization. atom transfer radical polymerization in the presence of transition-metal complexes. Journal of the American Chemical Society, 117(20), 5614-5615. doi: https://doi.org/10.1021/ja00125a035.
  21. Wang, Y., Soerensen, N., Zhong, M., Schroeder, H., Buback, M., & Matyjaszewski, K. (2013). Improving the “Livingness” of ATRP by Reducing Cu Catalyst Concentration. Macromolecules, 46(3), 683-691. doi: https://doi.org/10.1021/ma3024393.
  22. Yilmaz, G., & Yagci, Y. (2018). Photoinduced metal-free atom transfer radical polymerizations: state-of-the-art, mechanistic aspects and applications. Polymer Chemistry, 9(14), 1757-1762. doi: https://doi.org/10.1039/C8PY00207J.