Vol. 55 No. sp. is. 1 (2023): Vol. 55, special issue 1, 2023: In memoriam to the late Prof. Dr. Yusuf YAĞCI (1952-2023)
ITU ARI-A Natural Sciences

Mechanical Recycling of PET– Current Situation and Perspectives

Yonca Alkan Goksu
Istanbul Technical University

Published 04/01/2024

Keywords

  • PET recycling,,
  • mechanical recycling,
  • chain extenders,
  • PET

How to Cite

Alkan Goksu, Yonca. 2024. “Mechanical Recycling of PET– Current Situation and Perspectives”. ITU ARI Bulletin of Istanbul Technical University 55 (sp. is. 1):45-52. https://ari.itu.edu.tr/index.php/ituari/article/view/77.

Abstract

The exponential rise in global petroleum-based polymer production and consumption presents a significant environmental challenge, with projections indicating an alarming growth in annual plastic waste to 460 million tons by 2030. Despite the widespread use of poly(ethylene terephthalate) (PET) for its economic appeal and versatility, the accumulation of PET waste calls for urgent and effective recycling strategies. The critical importance of PET recycling to reduce environmental impact is emphasized by current worldwide efforts, such as restrictive laws imposed by the EU and the specific material limits implemented in countries like South Korea and Japan. While several mechanisms are employed for PET recycling, mechanical recycling emerges as a standout approach due to its industry applicability. However, challenges arise from PET degradation during reprocessing, necessitating innovative solutions. In this context, diverse chain extenders, including oxazolines, isocyanates, anhydrides, epoxides, and the promising Meldrum's acid derivatives, have been explored. These agents exhibit significant potential in improving the characteristics of PET throughout the recycling process, providing an avenue to reduce the environmental impact of plastic waste. This comprehensive perspective explores the current status and future potential of PET recycling. The combination of global initiatives, mechanical recycling innovations, and advanced chain extender strategies pave the way for a more sustainable and environmentally conscious future in polymer recycling.

References

  1. Alkan Goksu, Y. (2024). Exploring the Potential of Meldrum’s Acid-Bearing Chain Extenders for Mechanical Recycling of PET . Pure and Applied Chemistry. https://doi.org/10.1515/pac-2023-1123
  2. Alkan Goksu, Y., Kumbaraci, V., & Yagci, Y. (2019). Modular photoinduced grafting onto approach by ketene chemistry. Journal of Polymer Science Part A: Polymer Chemistry, 57(3), 274–280. https://doi.org/10.1002/pola.29045
  3. Al-Sabagh, A. M., Yehia, F. Z., Eshaq, G., Rabie, A. M., & ElMetwally, A. E. (2016). Greener routes for recycling of polyethylene terephthalate. Egyptian Journal of Petroleum, 25(1), 53–64.
  4. Arayesh, H., Golshan Ebrahimi, N., Khaledi, B., & Khabazian Esfahani, M. (2020). Introducing four different branch structures in PET by reactive processing––A rheological investigation. Journal of Applied Polymer Science, 137(41). https://doi.org/10.1002/app.49243
  5. Berg, D., Schaefer, K., & Moeller, M. (2019). Impact of the chain extension of poly (ethylene terephthalate) with 1, 3‐phenylene‐bis‐oxazoline and N, N′‐carbonylbiscaprolactam by reactive extrusion on its properties. Polymer Engineering & Science, 59(2), 284–294.
  6. Burke, D. J., Kawauchi, T., Kade, M. J., Leibfarth, F. A., McDearmon, B., Wolffs, M., Kierstead, P. H., Moon, B., & Hawker, C. J. (2012). Ketene-Based Route to rigid Cyclobutanediol Monomers for the Replacement of BPA in High Performance Polyesters. ACS Macro Letters, 1(11), 1228–1232. https://doi.org/10.1021/mz300497m
  7. de Lucas, N. C., Netto-Ferreira, J. C., Andraos, J., & Scaiano, J. C. (2001). Nucleophilicity toward Ketenes: Rate Constants for Addition of Amines to Aryl Ketenes in Acetonitrile Solution. The Journal of Organic Chemistry, 66(15), 5016–5021. https://doi.org/10.1021/jo005752q
  8. Grigore, M. (2017). Methods of Recycling, Properties and Applications of Recycled Thermoplastic Polymers. Recycling, 2(4), 24. https://doi.org/10.3390/recycling2040024
  9. Guclu, M., Alkan Göksu, Y., Özdemir, B., Ghanbari, A., & Nofar, M. (2022). Thermal Stabilization of Recycled PET Through Chain Extension and Blending with PBT. Journal of Polymers and the Environment, 30(2), 719–727. https://doi.org/10.1007/s10924-021-02238-8
  10. Gurgul, A., Szczepaniak, W., & Zabłocka-Malicka, M. (2018). Incineration and pyrolysis vs. steam gasification of electronic waste. Science of The Total Environment, 624, 1119–1124. https://doi.org/10.1016/j.scitotenv.2017.12.151
  11. Härth, M., Dörnhöfer, A., Kaschta, J., Münstedt, H., & Schubert, D. W. (2021). Molecular structure and rheological properties of a poly(ethylene terephthalate) modified by two different chain extenders. Journal of Applied Polymer Science, 138(13). https://doi.org/10.1002/app.50110
  12. Hundertmark, T., Mayer, M., McNally, C., Simons, T. J., & Witte, C. (2018). How plastics waste recycling could transform the chemical industry. McKinsey & Company, 1.
  13. Irfan, M., Ahmad, M., Fareed, Z., Iqbal, N., Sharif, A., & Wu, H. (2022). On the indirect environmental outcomes of COVID-19: short-term revival with futuristic long-term implications. International Journal of Environmental Health Research, 32(6), 1271–1281. https://doi.org/10.1080/09603123.2021.1874888
  14. Jang, J. Y., Sadeghi, K., & Seo, J. (2022). Chain-Extending Modification for Value-Added Recycled PET: A Review. Polymer Reviews, 62(4), 860–889. https://doi.org/10.1080/15583724.2022.2033765
  15. Jung, H., Leibfarth, F. A., Woo, S., Lee, S., Kang, M., Moon, B., Hawker, C. J., & Bang, J. (2013). Efficient Surface Neutralization and Enhanced Substrate Adhesion through Ketene Mediated Crosslinking and Functionalization. Advanced Functional Materials, 23(12), 1597–1602. https://doi.org/10.1002/adfm.201201352
  16. Kang, D. H., Auras, R., Vorst, K., & Singh, J. (2011). An exploratory model for predicting post-consumer recycled PET content in PET sheets. Polymer Testing, 30(1), 60–68. https://doi.org/10.1016/j.polymertesting.2010.10.010
  17. Karayannidis, G. P., & Psalida, E. A. (2000). Chain extension of recycled poly (ethylene terephthalate) with 2, 2′‐(1, 4‐phenylene) bis (2‐oxazoline). Journal of Applied Polymer Science, 77(10), 2206–2211.
  18. Leibfarth, F. A., & Hawker, C. J. (2013). The emerging utility of ketenes in polymer chemistry. Journal of Polymer Science Part A: Polymer Chemistry, 51(18), 3769–3782. https://doi.org/10.1002/pola.26797
  19. Leibfarth, F. A., Kang, M., Ham, M., Kim, J., Campos, L. M., Gupta, N., Moon, B., & Hawker, C. J. (2010a). A facile route to ketene-functionalized polymers for general materials applications. Nature Chemistry, 2(3), 207–212. https://doi.org/10.1038/nchem.538
  20. Leibfarth, F. A., Kang, M., Ham, M., Kim, J., Campos, L. M., Gupta, N., Moon, B., & Hawker, C. J. (2010b). A facile route to ketene-functionalized polymers for general materials applications. Nature Chemistry, 2(3), 207–212. https://doi.org/10.1038/nchem.538
  21. Leibfarth, F. A., Wolffs, M., Campos, L. M., Delany, K., Treat, N., Kade, M. J., Moon, B., & Hawker, C. J. (2012). Low-temperature ketene formation in materials chemistry through molecular engineering. Chem. Sci., 3(3), 766–771. https://doi.org/10.1039/C2SC00841F
  22. Li, Z., Mayer, R. J., Ofial, A. R., & Mayr, H. (2020). From Carbodiimides to Carbon Dioxide: Quantification of the Electrophilic Reactivities of Heteroallenes. Journal of the American Chemical Society, 142(18), 8383–8402. https://doi.org/10.1021/jacs.0c01960
  23. Liu, B., & Xu, Q. (2013). Effects of Bifunctional Chain Extender on the Crystallinity and Thermal Stability of PET. Journal of Materials Science and Chemical Engineering, 01(06), 9–15. https://doi.org/10.4236/msce.2013.16002
  24. May, C. A. (2018). Introduction to Epoxy Resins. In Epoxy Resins (pp. 1–8). Routledge. https://doi.org/10.1201/9780203756713-1
  25. Mehta, P. S. (1990). Bhopal Tragedy’s Health Effects. JAMA, 264(21), 2781. https://doi.org/10.1001/jama.1990.03450210081037
  26. Muthu, S. (2020). Environmental Footprints of Recycled Polyester (S. S. Muthu, Ed.). Springer Singapore. https://doi.org/10.1007/978-981-13-9578-9
  27. Pearly Neo. (n.d.). No colour, no PVC: South Korea bans hard-to-recycle plastic materials for F&B packaging. Retrieved November 16, 2023, from https://www.foodnavigator-asia.com/Article/2020/01/31/No-colour-no-PVC-South-Korea-bans-hard-to-recycle-plastic-materials-for-F-B-packaging
  28. Prata, J. C., Silva, A. L. P., Walker, T. R., Duarte, A. C., & Rocha-Santos, T. (2020). COVID-19 Pandemic Repercussions on the Use and Management of Plastics. Environmental Science & Technology, 54(13), 7760–7765. https://doi.org/10.1021/acs.est.0c02178
  29. Raffa, P., Coltelli, M.-B., Savi, S., Bianchi, S., & Castelvetro, V. (2012). Chain extension and branching of poly(ethylene terephthalate) (PET) with di- and multifunctional epoxy or isocyanate additives: An experimental and modelling study. Reactive and Functional Polymers, 72(1), 50–60. https://doi.org/10.1016/j.reactfunctpolym.2011.10.007
  30. Raheem, A. B., Noor, Z. Z., Hassan, A., Abd Hamid, M. K., Samsudin, S. A., & Sabeen, A. H. (2019). Current developments in chemical recycling of post-consumer polyethylene terephthalate wastes for new materials production: A review. Journal of Cleaner Production, 225, 1052–1064. https://doi.org/10.1016/j.jclepro.2019.04.019
  31. Staudinger, H. (1905). Ketene, eine neue Körperklasse. Berichte Der Deutschen Chemischen Gesellschaft, 38(2), 1735–1739. https://doi.org/10.1002/cber.19050380283
  32. Takenaka, N., Tominaga, A., Sekiguchi, H., Nakano, R., Takatori, E., & Yao, S. (2017). Creation of Advanced Recycle Process to Waste Container and Packaging Plastic — Polypropylene Sorted Recycle Plastic Case —. Nihon Reoroji Gakkaishi, 45(3), 139–143. https://doi.org/10.1678/rheology.45.139
  33. Tang, X., Guo, W., Yin, G., Li, B., & Wu, C. (2007). Reactive extrusion of recycled poly(ethylene terephthalate) with polycarbonate by addition of chain extender. Journal of Applied Polymer Science, 104(4), 2602–2607. https://doi.org/10.1002/app.24410
  34. Thiounn, T., & Smith, R. C. (2020). Advances and approaches for chemical recycling of plastic waste. Journal of Polymer Science, 58(10), 1347–1364. https://doi.org/10.1002/pol.20190261
  35. Tidwell, T. T. (2006). Ketene Chemistry after 100 Years: Ready for a New Century. European Journal of Organic Chemistry, 2006(3), 563–576. https://doi.org/10.1002/ejoc.200500452
  36. Torres, N., Robin, J. J., & Boutevin, B. (2001). Chemical modification of virgin and recycled poly(ethylene terephthalate) by adding of chain extenders during processing. Journal of Applied Polymer Science, 79(10), 1816–1824. https://doi.org/10.1002/1097-4628(20010307)79:10<1816::AID-APP100>3.0.CO;2-R
  37. Villalobos, M., Awojulu, A., Greeley, T., Turco, G., & Deeter, G. (2006). Oligomeric chain extenders for economic reprocessing and recycling of condensation plastics. Energy, 31(15), 3227–3234. https://doi.org/10.1016/j.energy.2006.03.026
  38. Wang, K., Zhang, Y., Zhong, Y., Luo, M., Du, Y., Wang, L., & Wang, H. (2020). Flotation separation of polyethylene terephthalate from waste packaging plastics through ethylene glycol pretreatment assisted by sonication. Waste Management, 105, 309–316. https://doi.org/10.1016/j.wasman.2020.02.021
  39. Wu, H., Lv, S., He, Y., & Qu, J.-P. (2019). The study of the thermomechanical degradation and mechanical properties of PET recycled by industrial-scale elongational processing. Polymer Testing, 77, 105882. https://doi.org/10.1016/j.polymertesting.2019.04.029
  40. Yamamoto, M., & Eva, S. N. (2022). What activities reduce plastic waste the most? – The path to a circular economy for Japan’s manufacturing industry. Waste Management, 151, 205–213. https://doi.org/10.1016/j.wasman.2022.07.041
  41. Yang, Z., Xin, C., Mughal, W., Li, X., & He, Y. (2018). High‐melt‐elasticity poly(ethylene terephthalate) produced by reactive extrusion with a multi‐functional epoxide for foaming. Journal of Applied Polymer Science, 135(8). https://doi.org/10.1002/app.45805
  42. Zhang, Y., Zhang, C., Li, H., Du, Z., & Li, C. (2010). Chain extension of poly(ethylene terephthalate) with bisphenol‐A dicyanate. Journal of Applied Polymer Science, 117(4), 2003–2008. https://doi.org/10.1002/app.32136