Vol. 55 No. sp. is. 1 (2023): Vol. 55, special issue 1, 2023: In memoriam to the late Prof. Dr. Yusuf YAĞCI (1952-2023)
ITU ARI-A Natural Sciences

The Role of Glucose Oxidase in Free Radical Polymerization

Elif L. Sahkulubey Kahveci
Beykent University, Faculty of Engineering and Architecture, Department of Biomedical Engineering, Sariyer, Istanbul, Türkiye
Muhammet Ubeydullah Kahveci
Istanbul Technical University

Published 04/30/2024

Keywords

  • Free radical polymerization,
  • oxygen inhibition,
  • enzyme

How to Cite

Sahkulubey Kahveci, Elif L., and Muhammet Ubeydullah Kahveci. 2024. “The Role of Glucose Oxidase in Free Radical Polymerization”. ITU ARI Bulletin of Istanbul Technical University 55 (sp. is. 1):57-62. https://ari.itu.edu.tr/index.php/ituari/article/view/79.

Abstract

Enzymes are biological catalyst that are essential for living organisms. Enzymes have been extensively employed in many industrial applications including medicine, cosmetics, pharmaceutics, dairy, bakering, beverage, animal feed, paper, leather, and etc. In addition, enzymes have been widely utilized in polymer industry and chemistry. Herein, roles of the enzymes in free radical polymerization are reviewed. Enzymes are usually utilized in free radical polymerization for deoxygenation of polymerization medium or generation of free radicals in a cascade reaction. One of the primary challenges in radical polymerization revolves around oxygen inhibition. Various strategies have been devised to address this issue. These include employing inert gases, applying coatings, increasing initiator concentration, incorporating additives such as amines, thiols, boranes, and silanes, as well as utilizing enzymes for deoxygenation. Prof. Yagci significantly advanced this field with groundbreaking research. Yagci and colleagues introduced a pioneering photopolymerization system that utilized glucose oxidase (GOx) and sugar to eliminate oxygen from the polymerization environment. This innovative approach served as inspiration for others to develop controlled/living polymerization techniques utilizing enzyme-mediated deoxygenation.

References

  1. Belon, C., Allonas, X., Croutxe-Barghorn, C., & Lalevee, J. (2010). Overcoming the Oxygen Inhibition in the Photopolymerization of Acrylates: A Study of the Beneficial Effect of Triphenylphosphine. Journal of Polymer Science Part a-Polymer Chemistry, 48(11), 2462-2469. https://doi.org/10.1002/pola.24017
  2. Berron, B. J., Johnson, L. M., Ba, X., McCall, J. D., Alvey, N. J., Anseth, K. S., & Bowman, C. N. (2011). Glucose Oxidase-Mediated Polymerization as a Platform for Dual-Mode Signal Amplification and Biodetection. Biotechnology and Bioengineering, 108(7), 1521-1528. https://doi.org/10.1002/bit.23101
  3. Chapman, R., Gormley, A. J., Herpoldt, K.-L., & Stevens, M. M. (2014). Highly Controlled Open Vessel RAFT Polymerizations by Enzyme Degassing. Macromolecules, 47(24), 8541-8547. https://doi.org/10.1021/ma5021209
  4. Chapman, R., Gormley, A. J., Stenzel, M. H., & Stevens, M. M. (2016). Combinatorial Low-Volume Synthesis of Well-Defined Polymers by Enzyme Degassing. Angewandte Chemie International Edition, 55(14), 4500-4503. https://doi.org/https://doi.org/10.1002/anie.201600112
  5. Cramer, N. B., O.Brien, C., Bowman, C. N., Miller, C. W., & Holen, J. V. (2006). Novel Photopolymerizable Monomers. UV&EB Technical Conference,
  6. Crivello, J. V., Dietliker, K., & Bradley, G. (1998). Photoinitiators for free radical cationic & anionic photopolymerisation. J. Wiley in association with SITA Technology.
  7. Davidson, R. S. (1998). Exploring the science, technology and applications of U.V and E.B. curing. SITA Technology Ltd.
  8. Dinda, S., Sarkar, S., & Das, P. K. (2018). Glucose oxidase mediated targeted cancer-starving therapy by biotinylated self-assembled vesicles [10.1039/C8CC03599G]. Chemical Communications, 54(71), 9929-9932. https://doi.org/10.1039/C8CC03599G
  9. Enciso, A. E., Fu, L., Lathwal, S., Olszewski, M., Wang, Z., Das, S. R., . . . Matyjaszewski, K. (2018). Biocatalytic “Oxygen-Fueled” Atom Transfer Radical Polymerization. Angewandte Chemie International Edition, 57(49), 16157-16161. https://doi.org/https://doi.org/10.1002/anie.201809018
  10. Enciso, A. E., Fu, L., Russell, A. J., & Matyjaszewski, K. (2018). A Breathing Atom-Transfer Radical Polymerization: Fully Oxygen-Tolerant Polymerization Inspired by Aerobic Respiration of Cells. Angewandte Chemie International Edition, 57(4), 933-936. https://doi.org/https://doi.org/10.1002/anie.201711105
  11. Fimia, A., López, N., Mateos, F., Sastre, R., Pineda, J., & Amat-Guerri, F. (1993). Elimination of Oxygen Inhibition in Photopolymer Systems Used as Holographic Recording Materials. Journal of Modern Optics, 40(4), 699-706. https://doi.org/10.1080/09500349314550741
  12. Fouassier, J. P. (1995). Photoinitiation, Photopolymerization and Photocuring: Fundamentals and Applications. Hanser Publishers.
  13. Fouassier, J. P., Ruhlmann, D., Graff, B., Morlet-Savary, F., & Wieder, F. (1995). Excited state processes in polymerization photoinitiators. Progress in Organic Coatings, 25(3), 235-271. https://doi.org/https://doi.org/10.1016/0300-9440(94)00545-C
  14. Fouassier, J. P. R. J. F. (1993). Radiation curing in polymer science and technology. Elsevier Applied Sci.
  15. Fu, L., Wang, Z., Lathwal, S., Enciso, A. E., Simakova, A., Das, S. R., . . . Matyjaszewski, K. (2018). Synthesis of Polymer Bioconjugates via Photoinduced Atom Transfer Radical Polymerization under Blue Light Irradiation. ACS Macro Letters, 7(10), 1248-1253. https://doi.org/10.1021/acsmacrolett.8b00609
  16. Gau, E., Flecken, F., Ksiazkiewicz, A. N., & Pich, A. (2018). Enzymatic synthesis of temperature-responsive poly(N-vinylcaprolactam) microgels with glucose oxidase [10.1039/C7GC03111D]. Green Chemistry, 20(2), 431-439. https://doi.org/10.1039/C7GC03111D
  17. Gauthier, M. A., Stangel, I., Ellis, T. H., & Zhu, X. X. (2005). Oxygen Inhibition in Dental Resins. Journal of Dental Research, 84(8), 725-729. https://doi.org/10.1177/154405910508400808
  18. Huggett, A. S. G., & Nixon, D. A. (1957). USE OF GLUCOSE OXIDASE, PEROXIDASE, AND O-DIANISIDINE IN DETERMINATION OF BLOOD AND URINARY GLUCOSE. The Lancet, 270(6991), 368-370. https://doi.org/https://doi.org/10.1016/S0140-6736(57)92595-3
  19. Husár, B., Ligon, S. C., Wutzel, H., Hoffmann, H., & Liska, R. (2014). The formulator's guide to anti-oxygen inhibition additives. Progress in Organic Coatings, 77(11), 1789-1798. https://doi.org/https://doi.org/10.1016/j.porgcoat.2014.06.005
  20. Iwata, H., Hata, Y., Matsuda, T., & Ikada, Y. (1991). Initiation of radical polymerization by glucose oxidase utilizing dissolved oxygen. Journal of Polymer Science Part A: Polymer Chemistry, 29(8), 1217-1218. https://doi.org/https://doi.org/10.1002/pola.1991.080290818
  21. Johnson, L. M., DeForest, C. A., Pendurti, A., Anseth, K. S., & Bowman, C. N. (2010). Formation of Three-Dimensional Hydrogel Multilayers Using Enzyme-Mediated Redox Chain Initiation. ACS Applied Materials & Interfaces, 2(7), 1963-1972. https://doi.org/10.1021/am100275n
  22. Johnson, L. M., Fairbanks, B. D., Anseth, K. S., & Bowman, C. N. (2009). Enzyme-Mediated Redox Initiation for Hydrogel Generation and Cellular Encapsulation. Biomacromolecules, 10(11), 3114-3121. https://doi.org/10.1021/bm900846m
  23. Khatami, S. H., Vakili, O., Ahmadi, N., Soltani Fard, E., Mousavi, P., Khalvati, B., . . . Movahedpour, A. Glucose oxidase: Applications, sources, and recombinant production. Biotechnology and Applied Biochemistry, n/a(n/a). https://doi.org/https://doi.org/10.1002/bab.2165
  24. Li, R.-Y., & An, Z.-S. (2021). Photoenzymatic RAFT Emulsion Polymerization with Oxygen Tolerance. Chinese Journal of Polymer Science, 39(9), 1138-1145. https://doi.org/10.1007/s10118-021-2556-5
  25. Liao, C.-A., Wu, Q., Wei, Q.-C., & Wang, Q.-G. (2015). Bioinorganic Nanocomposite Hydrogels Formed by HRP–GOx-Cascade-Catalyzed Polymerization and Exfoliation of the Layered Composites. Chemistry – A European Journal, 21(36), 12620-12626. https://doi.org/https://doi.org/10.1002/chem.201501529
  26. Ligon, S. C., Husár, B., Wutzel, H., Holman, R., & Liska, R. (2014). Strategies to Reduce Oxygen Inhibition in Photoinduced Polymerization. Chemical Reviews, 114(1), 557-589. https://doi.org/10.1021/cr3005197
  27. Liu, Z., Lv, Y., & An, Z. (2017). Enzymatic Cascade Catalysis for the Synthesis of Multiblock and Ultrahigh-Molecular-Weight Polymers with Oxygen Tolerance. Angewandte Chemie International Edition, 56(44), 13852-13856. https://doi.org/https://doi.org/10.1002/anie.201707993
  28. Lv, Y., Liu, Z., Zhu, A., & An, Z. (2017). Glucose oxidase deoxygenation−redox initiation for RAFT polymerization in air. Journal of Polymer Science Part A: Polymer Chemistry, 55(1), 164-174. https://doi.org/https://doi.org/10.1002/pola.28380
  29. Mohammed, A. A., Aviles Milan, J., Li, S., Chung, J. J., Stevens, M. M., Georgiou, T. K., & Jones, J. R. (2019). Open vessel free radical photopolymerization of double network gels for biomaterial applications using glucose oxidase [10.1039/C9TB00658C]. Journal of Materials Chemistry B, 7(25), 4030-4039. https://doi.org/10.1039/C9TB00658C
  30. Moreno, A., & Sipponen, M. H. (2020). Biocatalytic nanoparticles for the stabilization of degassed single electron transfer-living radical pickering emulsion polymerizations. Nature Communications, 11(1), 5599. https://doi.org/10.1038/s41467-020-19407-3
  31. Navarro, L. A., Enciso, A. E., Matyjaszewski, K., & Zauscher, S. (2019). Enzymatically Degassed Surface-Initiated Atom Transfer Radical Polymerization with Real-Time Monitoring. Journal of the American Chemical Society, 141(7), 3100-3109. https://doi.org/10.1021/jacs.8b12072
  32. Nesvadba, P. (2012). Radical Polymerization in Industry. In Encyclopedia of Radicals in Chemistry, Biology and Materials. https://doi.org/https://doi.org/10.1002/9781119953678.rad080
  33. Nieto, M., Nardecchia, S., Peinado, C., Catalina, F., Abrusci, C., Gutiérrez, M. C., . . . del Monte, F. (2010). Enzyme-induced graft polymerization for preparation of hydrogels: synergetic effect of laccase-immobilized-cryogels for pollutants adsorption [10.1039/C0SM00079E]. Soft Matter, 6(15), 3533-3540. https://doi.org/10.1039/C0SM00079E
  34. Oytun, F., Kahveci, M. U., & Yagci, Y. (2013). Sugar overcomes oxygen inhibition in photoinitiated free radical polymerization. Journal of Polymer Science Part a-Polymer Chemistry, 51(8), 1685-1689. https://doi.org/10.1002/pola.26554
  35. Pappas, S. P. (1985). UV curing: Science and Technology. Technology Marketing Corporation.
  36. Pynaert, R., Buguet, J., Croutxé-Barghorn, C., Moireau, P., & Allonas, X. (2013). Effect of reactive oxygen species on the kinetics of free radical photopolymerization [10.1039/C3PY21163K]. Polymer Chemistry, 4(8), 2475-2479. https://doi.org/10.1039/C3PY21163K
  37. Reyhani, A., Nothling, M. D., Ranji-Burachaloo, H., McKenzie, T. G., Fu, Q., Tan, S., . . . Qiao, G. G. (2018). Blood-Catalyzed RAFT Polymerization [https://doi.org/10.1002/anie.201802544]. Angewandte Chemie International Edition, 57(32), 10288-10292. https://doi.org/https://doi.org/10.1002/anie.201802544
  38. Rosenfeld, A., Oelschlaeger, C., Thelen, R., Heissler, S., & Levkin, P. A. (2020). Miniaturized high-throughput synthesis and screening of responsive hydrogels using nanoliter compartments. Materials Today Bio, 6, 100053. https://doi.org/https://doi.org/10.1016/j.mtbio.2020.100053
  39. Schneiderman, D. K., Ting, J. M., Purchel, A. A., Miranda, R., Tirrell, M. V., Reineke, T. M., & Rowan, S. J. (2018). Open-to-Air RAFT Polymerization in Complex Solvents: From Whisky to Fermentation Broth. ACS Macro Letters, 7(4), 406-411. https://doi.org/10.1021/acsmacrolett.8b00069
  40. Seo, S. E., Discekici, E. H., Zhang, Y., Bates, C. M., & Hawker, C. J. (2020). Surface-initiated PET-RAFT polymerization under metal-free and ambient conditions using enzyme degassing. Journal of Polymer Science, 58(1), 70-76. https://doi.org/https://doi.org/10.1002/pola.29438
  41. Shenoy, R., & Bowman, C. N. (2012). Kinetics of interfacial radical polymerization initiated by a glucose-oxidase mediated redox system. Biomaterials, 33(29), 6909-6914. https://doi.org/https://doi.org/10.1016/j.biomaterials.2012.06.014
  42. Shenoy, R., Tibbitt, M. W., Anseth, K. S., & Bowman, C. N. (2013). Formation of Core–Shell Particles by Interfacial Radical Polymerization Initiated by a Glucose Oxidase-Mediated Redox System. Chemistry of Materials, 25(5), 761-767. https://doi.org/10.1021/cm303913f
  43. Staudinger, H. (1920). Über Polymerisation. Berichte der deutschen chemischen Gesellschaft (A and B Series), 53(6), 1073-1085. https://doi.org/https://doi.org/10.1002/cber.19200530627
  44. Studer, K., Decker, C., Beck, E., & Schwalm, R. (2003). Overcoming oxygen inhibition in UV-curing of acrylate coatings by carbon dioxide inerting, Part I. Progress in Organic Coatings, 48(1), 92-100. https://doi.org/10.1016/s0300-9440(03)00120-6
  45. Tan, J., Liu, D., Bai, Y., Huang, C., Li, X., He, J., . . . Zhang, L. (2017). Enzyme-Assisted Photoinitiated Polymerization-Induced Self-Assembly: An Oxygen-Tolerant Method for Preparing Block Copolymer Nano-Objects in Open Vessels and Multiwell Plates. Macromolecules, 50(15), 5798-5806. https://doi.org/10.1021/acs.macromol.7b01219
  46. Uyama, H., Kurioka, H., & Kobayashi, S. (1997). Novel Bienzymatic Catalysis System for Oxidative Polymerization of Phenols. Polymer Journal, 29(2), 190-192. https://doi.org/10.1295/polymj.29.190
  47. Wang, Y., Dadashi-Silab, S., Lorandi, F., & Matyjaszewski, K. (2019). Photoinduced atom transfer radical polymerization in ab initio emulsion. Polymer, 165, 163-167. https://doi.org/https://doi.org/10.1016/j.polymer.2019.01.034
  48. Wang, Y., Fu, L., & Matyjaszewski, K. (2018). Enzyme-Deoxygenated Low Parts per Million Atom Transfer Radical Polymerization in Miniemulsion and Ab Initio Emulsion. ACS Macro Letters, 7(11), 1317-1321. https://doi.org/10.1021/acsmacrolett.8b00711
  49. Wong, C. M., Wong, K. H., & Chen, X. D. (2008). Glucose oxidase: natural occurrence, function, properties and industrial applications. Applied Microbiology and Biotechnology, 78(6), 927-938. https://doi.org/10.1007/s00253-008-1407-4
  50. Yagci, Y., Jockusch, S., & Turro, N. J. (2010). Photoinitiated Polymerization: Advances, Challenges, and Opportunities. Macromolecules, 43(15), 6245-6260. https://doi.org/10.1021/ma1007545
  51. Yeow, J., Chapman, R., Gormley, A. J., & Boyer, C. (2018). Up in the air: oxygen tolerance in controlled/living radical polymerisation [10.1039/C7CS00587C]. Chemical Society Reviews, 47(12), 4357-4387. https://doi.org/10.1039/C7CS00587C
  52. Zavada, S. R., Battsengel, T., & Scott, T. F. (2016). Radical-Mediated Enzymatic Polymerizations. International Journal of Molecular Sciences, 17(2), 195. https://www.mdpi.com/1422-0067/17/2/195
  53. Zhu, D., Wu, Q., & Wang, N. (2011). 3.02 - Industrial Enzymes. In M. Moo-Young (Ed.), Comprehensive Biotechnology (Second Edition) (pp. 3-13). Academic Press. https://doi.org/https://doi.org/10.1016/B978-0-08-088504-9.00182-3