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Lumped Vortex Element Flying Over Free Water Surface
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Abstract: In this study, the lift coefficients (circulation) of two-dimensional flat-plate flying with a constant speed over a free surface
have been calculated by a closed-form (analytical) solution. The effects of very high speed have also been included in the
calculations. The flat-plate has been modeled by a lumped vortex element under the conditions of potential flow theory. While the
kinematic boundary condition (zero normal velocity condition) is satisfied at three-quarter chord length of flat-plate, linearized and
combined (kinematic and dynamic) condition has been applied on the free water surface. The total velocity potential has then been
calculated by the method of images. Kutta condition is satisfied automatically at the trailing edge by this lumped vortex element. The
wave elevations on the free surface have also been calculated in a closed-form solution. First, the lift coefficient by the present
analytical solution have been validated with those of another numerical method for NACA0004 foil section. Later, the effects of Froude
number, clearance (vertical distance) of flat-plate from calm free water surface, and the angle of attack on the results (namely lift
coefficients and free surface deformations) have been discussed in a detailed manner. It has been found that the lift coefficient varies
significantly with Froude number particularly for lower clearance values. An increase in Froude number causes also an increase both
in wave-length and in wave-height on the free surface. On the other hand, a decrease in clearance (means a closer distance to free
surface) causes an increase in wave-height but not in wave-length. A similar finding is noted for angle of attack. An increase in angle
of attack causes an increase in loading as well as in wave-height but not in wave-length.

Keywords: Lumﬁed vortex element, free surface, wave deformation, lift coefficient, Froude number.

Serbest Su Yiizeyinin Uzerinde Ugan Yogunlastirnimis Girdap Eleman

Ozet: Bu galigmada, serbest su yiizeyi (izerinde sabit bir hizla ugan (hareket eden) iki boyutlu diiz bir levhanin kaldirma kuvveti
(sirklasyon degeri) katsayisi kapali (analitik) bir géziimle hesaplanmistir. Cok yiiksek hizlar da hesaplamalara dahil edilmistir. DGz
levha, potansiyel akim teorisi g6z dniine alinarak yogunlastirilmis girdap elemani ile modellenmistir. Kinematik sinir sarti (sifir normal
hiz sart1) diiz levhanin ¢ geyrek kiris boyu mesafesinde saglanirken, lineer ve kinematik-dinamik birlestiriimis bir kosul serbest su
yuzeyinde uygulanmigtir. Daha sonra, probleme ait toplam hiz potansiyeli ayna simetrigi yontemiyle elde edilebilmistir. Bu
yogunlastiriimis girdap elemani modelinde, Kutta sarti otomatik olarak saglanmaktadir. Yine, serbest su yizeyindeki dalga
deformasyonlari da kapali bir ¢éziim olarak hesaplanmistir. ik olarak, NACA0004 foil geometrisi kullanilarak mevcut analitik géziimle
hesaplanan kaldirma kuvveti katsayisi, diger sayisal bir yontemle bulunan kaldirma kuvveti katsayisi ile karsilastiriimis ve gerekli
dogrulama galismasi yapilmistir. Daha sonra, Froude sayisinin, diiz levha ile serbest su ylzeyi arasindaki disey mesafenin ve
hiicim agilarinin sonuglar (kaldirma kuvveti ve su yuzeyi deformasyonlari) Gzerindeki etkileri ayrintili bir bicimde tartigilmigtir.
Ozellikle, diisiik diiz levha-serbest su yiizeyi arasi mesafede, Froude sayisinin kaldirma kuvveti katsayisi iizerinde gok énemli
degisikliklere neden oldugu bulunmustur. Ayrica artan Froude sayisi ile, serbest su ylizeyinde hem dalga boyunun hem de dalga
yuksekliginin arttig1 gérdlmastir. Dz levha serbest su ylzeyine yaklastikga, dalga yuksekliginin arttigi ancak dalga boyunun
degismedigdi gbézlemlenmistir. Benzer bir sonu¢ hicim agisi i¢in de not edilmistir. Hiclim agisindaki artis diiz levha Uzerindeki
yuklemeyi ve dalga yuksekligini artirmaktadir, ancak dalga boyunda herhangi bir degisime neden olmamaktadir.
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1.Introduction

Air wings (lifting surfaces) can help the marine vehicles support the
weight of craft fully or partially at high speeds. Marine vehicles with
WIG (wing-in-ground) effect, some racing and sport boats, including
catamarans with hydrofoils and other air-assisted marine crafts can
take this advantage of air wings. In this study, a closed-form
(analytical) solution has been developed for the performance analysis
of 2-D (two-dimensional) flat plate flying (moving) with a constant
speed above free water surface. To do this, a lumped-vortex element
has been utilized. To the best of the author’s knowledge, there is no
such study in the literature.

In the past, 2-D WIG that is moving over free surface has been
investigated numerically in (Zong et al., 2012). It was reported in this
study that the WIG effect is significant when the clearance (distance
between WIG and free water surface) is small and the free surface
behaves like a rigid wall at high velocity of WIG. The problem of 2-D
biplanes (with WIG effect) working near a free water surface was
solved by extending the classical lifting theory in (Liang et al. 2013a).
In this study, 3-D (three-dimensional) problem was also solved. Some
extensive numerical results were presented for the effect of clearance
(height from free surface) and the distance between two foils on the
results (such as, lift coefficient, drag coefficient, etc.). Both 2-D and 3-
D WIG problems were also solved (Barber, 2007). It was demonstrated
that for low Froude numbers (Fr < 1), the surface deformation is a small
depression of the surface beneath the foil. If the Froude number
increases, a small change in the shape of the deformation is observed.
At higher Froude numbers (for instance, say a Froude number of 14),
the surface is not a depression anymore, but rather a rise beneath the
foil. It was expressed that this result was also consistent with that of
shown before (Grundy 1986). Matveev (2014) has described a coupled
aero-hydrodynamic model for a ram wing moving above water under
the condition of steady motion. The factors affecting the aerodynamic
performance of a ram wing and the associated water surface
deformations have been presented in the study. It has been shown
that an extent of blockage of wing sides can drastically change the ram
wing lifting performance. In another study, the effects of free surface
both on 2-D airfoils and 3-D wings moving steadily over a free surface
have been investigated by an iterative numerical method (Bal, 2016).
It was concluded in the study that free surface can affect the airfoil or
wing performance drastically if the clearance is sufficiently small. In
addition, Bal (2018) showed that tapered 3-D wing with different swept
angles and dihedral angles under WIG effect were investigated
numerically. It was found that the shape of wing is important in terms
of its performance under certain conditions. An in-depth review on the
research and development of WIG effect technology can be found in
Rozhdestvensky’s work (2006).

There are also more advanced methods such as nonlinear numerical
methods and CFD (Computational Fluid Dynamics) to solve the
problem (Dogrul and Bal, 2016), (Kinaci and Bal, 2016), (Liang et al.,
2013b), (Zhietal., 2019) (Hu et al., 2021). They generate quite realistic
solutions. All these methods are robust and reliable. However, they
require computational time and memory. On the other hand, lumped
vortex element is a very simple and effective representation of flat-
plate (Katz and Plotkin, 2001). The Ilumped vortex element
automatically satisfies the Kutta condition at the trailing edge of flat-
plate and gives the exact solution of the problem (Katz, 2019). In this
study the flat-plate moving steadily over a free surface have been
represented by a lumped vortex element and closed-form solutions
have been developed both for lift coefficients and free surface
deformations.

2. Mathematical Formulation

A boundary value problem can be defined to solve the steady
uniform flow passing a two-dimensional flat-plate flying over a
free water surface. The flow field is assumed to be
incompressible, inviscid, and irrotational. Therefore, potential
flow theory can be applied. The x-axis is positive in the direction

of uniform inflow (U) and the z-axis is positive upwards as shown
in Figure 1. The flat-plate is located above calm free surface at z
= h. The governing equation is the Laplace equation that the
perturbation potential, ¢ (in terms of the total potential, ® ( = Ux
+ ¢) ) should satisfy the continuity equation in the fluid domain:

V2p(x,z) =0 (D

The following boundary conditions should also be satisfied by the
perturbation potential function ¢:

Linearized free surface condition: The following combined
(kinematic and dynamic) and linearized free surface equation
should be satisfied by the perturbation potential function:

¢ 0 _

. 05, =

0 on z=0 (2)
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Here, ko=g/U? is the wave number, and g is the gravitational
acceleration. The corresponding wave elevation in linearized
form from Bernoulli equation can also be given as follows:

__uad
{=—3% (3)

Radiation condition: There should be no upstream waves. This
means that the potential function should satisfy the following both
equations:

lim ¢ - 0 and lim¢ - M 4
X—>—00 X—00

Here M is a finite number. Refer to (Bal and Kinnas, 2002) and
(Bal et al., 2001) for details.

The Kutta condition and kinematic condition on flat-plate are
explained below.

3. Method of Solution

The flat-plate has been modeled by a lumped vortex element as
mentioned above (Katz and Plotkin, 2001). To do this, the sum
of the distributed vortices on flat-plate is replaced by a simple
single (point) vortex with strength I'. It is placed at the quarter-
chord point of the flat-plate and the kinematic boundary condition
(i.e. the zero normal velocity condition) is satisfied at the three-
quarter chord point (Katz and Plotkin, 2001). The Kutta condition
at the trailing edge of flat-plate is therefore satisfied
automatically. The method of images was then utilized to satisfy
the linearized free surface condition. The potential function ¢x for
a single vortex with strength I, located at z = h can be written as:

d(02) = —-tant () ®)
X,Z) = ——tan
! 21 X

By using the following integral equation (Gradshteyn and Ryzhik,

1965):

(6)

—k(h- ; —
-[ e (h-z) Sll’l(kX) dk = m
0

and taking the derivative of Equation (5) with respect to z, ¢1 can
be re-written as:

[ fek0-2) gin(kx
¢1(x,2) = Ef ° ksm( )dk (7)
0
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Itis assumed that the perturbation potential, ®(x,z) is equal to ¢1
+ 2 + ¢3. Here, ¢2is the potential function due to the mirror image
of single vortex with the same strength T but in the opposite
direction of rotation. It is located z=-h. Moreover, ¢3 is the
gravitational wave potential and can be calculated by using the
free surface condition, Equation (2), as follows:

_ T _g(z+th) _ T rooe K@M in(ky)
b2(x,2) = Zntan ( X ) - 2mYo k dk
(8)
T r e~K(h=2) i (kx) dk 9
¢3(X’Z)_Ef k_ko ()
0

For the evaluation of definite integral I, in Equation (9), the
method of solution given by Hess and Smith (1966) has been
adopted here. The integral, “I” can now be written as:

= joe_k(h_z) sin(kx) =~
B k — kg T 2442
0

+ Cme~ko(h=2) co5(kx)

b.c—a.d

(10)

Here, C is 2 for x—+« and it is 0 for x—-«, to satisfy the radiation
condition given in Equation (4). The calculated a, b, c and d
coefficients are given in the Appendix. They are taken from
(Hess and Smith, 1966).

Now, if the kinematic boundary condition (zero normal velocity
on flat-plate) is applied at three-quarter chord point of flat-plate,
the following equation can be given as:

3o ( X=2£cosa, Z=h—% sina) _

= —U(sina)(cosa)(11)

0z

and if the circulation value for lumped vortex element in an
unbounded flow domain (no free surface case) '~ is utilized:

(12)

the following equation for circulation ratio can be obtained as:

I, = mUc(sina)

r (cosa) [1 X 1 X
oo c 2x2+(h-z)2  2x2%2+(z+h)?2

-1
kOI] at (x = gcosa, Zz=h-— gsina)

(13)
Note that:
r CL
- 14

Here, CLis the lift coefficient of flat-plate with free surface effect
and Cv~, the lift coefficient of flat-plate in unbounded flow domain
(in case of no free surface effect), and CrL-=211(sina).

Furthermore, the wave elevation on the free surface can be
calculated from Equation (3) as follows:

0(x,2=0) _ L [U h + ]/U] at (X, 7 = O)

c T nc E){2+(h)2
(15)
where
a.c+b.d
= c2+—dz — Crme ko(h) sin(kox) (16)

I (circulation with free surface efect) is calculated by Equation (13).

Point where lumped vortex
has been located

Control point where kinematic
boundary condition has been
satisfied

N x

i<

c(x)

I\
Point where image vortex

has been located

Figure 1. Definition of problem and coordinate system.

4. Numerical Results and Discussion

First, the method has been validated with the results of
NACAO0004 foil section given in (Zong et al., 2012). Thickness
ratio of foil is 0.04. The angle of attack is (a=4°). Froude numbers

(Fr, =\/%), are 15 and 18, and the corresponding ratios of
clearance of flat-plate from free surface (h/c) are 1.0 and 1.5,
respectively. The lift coefficient CL by present method is 0.53 at

Frc=18 and h/c=1.5 while it is given as 0.53 in (Zong et al., 2012).

The lift coefficient CL by present method is 0.55 at Frc=15 and
h/c=1.0 while it is 0.55 given in (Zong et al., 2012). This is a very
strong validation of this analytical solution.

Later, the lift coefficient ratios versus Froude number at different
clearance ratios by the present method have been shown in
Figure 2. While the free surface causes an increase in lift
coefficients of flat-plate for lower Froude numbers, it causes a
decrease for higher Froude numbers (say Frc > 1). Smaller
clearance ratio makes this effect much clear. In Figure 3, the
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variation of lift coefficient with Froude number as well as with the
angle of attack of flat-plate is shown. Note that the differences
due to angle of attack are indistinguishable.

———=—— h/c=0.5
———=—— h/c=1.0
h/c=2.0

o 5 10 15 20
Fr,

Figure 2. Lift coefficient ratio versus Froude number at different
clearance ratios.
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Figure 3. Lift coefficient ratio versus Froude number at different
angles of attack.

In Figure 4, the change in wave elevation with Froude number
has been demonstrated for a fixed clearance ratio at a fixed
angle of attack. Note that as the Froude number increases, both
the wave-height and wave-length become larger. This is
consistent with those of given in (Larsson and Raven, 2010). In
Figure 5, the change in wave elevation with clearance ratio has
been demonstrated for a fixed Froude number and fixed angle of
attack. As the clearance ratio decreases, the wave height
increases but the wave-length becomes fixed. Finally, the effects
of angle of attack on wave elevations have been shown in Figure
6. An increase in angle of attack for a fixed Froude number and
fixed clearance ratio causes an increase in wave height but not
in wave-length, which remains constant.
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Figure 4. Variation of wave elevation with Froude number.
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Figure 5. Variation of wave elevation with clearance ratios.
5. Conclusion

A closed-form solution has been developed for a flat-plate flying
(moving) with a constant speed under a free surface. A
hydrodynamic analysis has then been carried out for this
problem. The flat-plate has been represented by a lumped vortex
element. To the best of author’'s knowledge, there has been no
such a study in literature before. An analytical solution has been
obtained for lift coefficient and wave deformation on the free
surface. The results by the present method were validated with
those of another numerical method given in literature. The
findings can be summarized as follows:

Bal



ITU ARI-Bulletin of the Istanbul Technical University

0.4

0.35
0.3

e g Fr =1.052
R

0.25
0.2
0.15
o 0.1
I
0.05

iz RANEE REEEY ARRRE RRRRE RRRRS Rnnny tanas!

o

-0.05 F

0.1 f ‘:’ £ 4

0.15F "7 vod
E 4 7

02F %7 Y 5 %
E . . 1 w%{ | - L l%g L |
0 5 10 15 20

x/c

Figure 6. Variation of wave elevation with angle of attack.

* Free surface causes an increase in lift coefficient of flat-plate
for lower Froude numbers. On the other hand, it causes a
decrease for higher Froude numbers, (say greater than 1).

* An increase in Froude number causes an increase in wave
height and wave-length.

» A decrease in clearance ratio from free surface causes an
increase in wave height, but not in wave-length.

* An increase in angle of attack for a fixed Froude number and
fixed clearance ratio from free surface causes an increase in
wave height. But it causes no change in wave-length.

6. Nomenclature

c chord

CL lift coefficient

Fre Froude number

g gravitational acceleration

h clearance between flat-plate & free surface
ko wave number

p ambient pressure

U uniform incoming velocity

X horizontal axis of coordinate system
z vertical axis of coordinate system

a angle of attack

r circulation

()] perturbation potential

® total potential

p density of water

C wave elevation

7. Appendix

After the definitions of r = \/x2 4+ (z—h)2and § = tan™? (ﬁ) ,

the following constants hold as given on pages 66-67 in the
article by Hess and Smith (1966):

a = —[Iln(kor) + 0.99999207y + m;kyr(In(k,r) cosB — BsinP)

+ yn;Kkqr cosf

+ m,ko?r2(In(kor) cos2B — Bsin2p)
+ yn,ko®r2cos2f

+ mzko r3(In(kor) cos3p — Bsin3p)
+ ynzko3r3cos3p

+ myko*r*(In(kor) cos4p — Bsin4f)
+ yngko*rtcos4B + yngk, récos5p

b = —[B + m;kor(In(k,r) sinf + BcosP) + yn;ker sinf
+ myko?r2(In(kor) sin2B + Bcos2pB)
+ ynyko?r2sin2
+ mzko®r3(In(kor) sin3p + Bcos3P)
+ ynszko3r3sin3p
+ myko*r*(In(kor) sin4p + Bcos4B)
+ yngko *rtsin4B + ynsk, °r®sin5p

¢ = 1+ d;Kor cosf + d,ko*r2cos2p + dsk,>r3cos3p
+ dyko*r*cos4p + dsk,°rScos58
+ dgko°récos6p

d = d;kor sinB + dyko2r2sin2p + dsko r3sin3B + dgko*rsin4p
+ dgko rosin5p + dgkorésin6p
y=0.5772156649

m1=0.23721365, m2=0.0206543, ms=0.000763297,
m4=0.0000097687

n1=-1.49545886, n2=0.041806426,
n4=0.0019387339, n5=-0.00051801555

ns=-0.03000591,

d1=-0.76273617, d2=0.28388363, ds=-0.066786033,
d4=0.012982719, ds=-0.0008700861, ds=0.0002989204
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