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Abstract: In this study, the lift coefficients (circulation) of two-dimensional flat-plate flying with a constant speed over a free surface 
have been calculated by a closed-form (analytical) solution. The effects of very high speed have also been included in the 
calculations. The flat-plate has been modeled by a lumped vortex element under the conditions of potential flow theory. While the 
kinematic boundary condition (zero normal velocity condition) is satisfied at three-quarter chord length of flat-plate, linearized and 
combined (kinematic and dynamic) condition has been applied on the free water surface. The total velocity potential has then been 
calculated by the method of images. Kutta condition is satisfied automatically at the trailing edge by this lumped vortex element. The 
wave elevations on the free surface have also been calculated in a closed-form solution. First, the lift coefficient by the present 
analytical solution have been validated with those of another numerical method for NACA0004 foil section. Later, the effects of Froude 
number, clearance (vertical distance) of flat-plate from calm free water surface, and the angle of attack on the results (namely lift 
coefficients and free surface deformations) have been discussed in a detailed manner. It has been found that the lift coefficient varies 
significantly with Froude number particularly for lower clearance values. An increase in Froude number causes also an increase both 
in wave-length and in wave-height on the free surface. On the other hand, a decrease in clearance (means a closer distance to free 
surface) causes an increase in wave-height but not in wave-length. A similar finding is noted for angle of attack. An increase in angle 
of attack causes an increase in loading as well as in wave-height but not in wave-length. 
 
Keywords: Lumped vortex element, free surface, wave deformation, lift coefficient, Froude number.  

    
Serbest Su Yüzeyinin Üzerinde Uçan Yoğunlaştırılmış Girdap Elemanı 

 
Özet: Bu çalışmada, serbest su yüzeyi üzerinde sabit bir hızla uçan (hareket eden) iki boyutlu düz bir levhanın kaldırma kuvveti 
(sirkülasyon değeri) katsayısı kapalı (analitik) bir çözümle hesaplanmıştır. Çok yüksek hızlar da hesaplamalara dȃhil edilmiştir. Düz 
levha, potansiyel akım teorisi göz önüne alınarak yoğunlaştırılmış girdap elemanı ile modellenmiştir. Kinematik sınır şartı (sıfır normal 
hız şartı) düz levhanın üç çeyrek kiriş boyu mesafesinde sağlanırken, lineer ve kinematik-dinamik birleştirilmiş bir koşul serbest su 
yüzeyinde uygulanmıştır. Daha sonra, probleme ait toplam hız potansiyeli ayna simetriği yöntemiyle elde edilebilmiştir. Bu 
yoğunlaştırılmış girdap elemanı modelinde, Kutta şartı otomatik olarak sağlanmaktadır. Yine, serbest su yüzeyindeki dalga 
deformasyonları da kapalı bir çözüm olarak hesaplanmıştır. İlk olarak, NACA0004 foil geometrisi kullanılarak mevcut analitik çözümle 
hesaplanan kaldırma kuvveti katsayısı, diğer sayısal bir yöntemle bulunan kaldırma kuvveti katsayısı ile karşılaştırılmış ve gerekli 
doğrulama çalışması yapılmıştır. Daha sonra, Froude sayısının, düz levha ile serbest su yüzeyi arasındaki düşey mesafenin ve 
hücüm açılarının sonuçlar (kaldırma kuvveti ve su yüzeyi deformasyonları) üzerindeki etkileri ayrıntılı bir biçimde tartışılmıştır. 
Özellikle, düşük düz levha-serbest su yüzeyi arası mesafede, Froude sayısının kaldırma kuvveti katsayısı üzerinde çok önemli 
değişikliklere neden olduğu bulunmuştur. Ayrıca artan Froude sayısı ile, serbest su yüzeyinde hem dalga boyunun hem de dalga 
yüksekliğinin arttığı görülmüştür. Düz levha serbest su yüzeyine yaklaştıkça, dalga yüksekliğinin arttığı ancak dalga boyunun 
değişmediği gözlemlenmiştir. Benzer bir sonuç hücüm açısı için de not edilmiştir. Hücüm açısındaki artış düz levha üzer indeki 
yüklemeyi ve dalga yüksekliğini artırmaktadır, ancak dalga boyunda herhangi bir değişime neden olmamaktadır. 
Anahtar Kelimeler: Yoğunlaştırılmış girdap elemanı, serbest yüzey, dalga deformasyonu, kaldırma kuvveti katsayısı, Froude 
sayısı.  
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1.Introduction 
 
Air wings (lifting surfaces) can help the marine vehicles support the 
weight of craft fully or partially at high speeds. Marine vehicles with 
WIG (wing-in-ground) effect, some racing and sport boats, including 
catamarans with hydrofoils and other air-assisted marine crafts can 
take this advantage of air wings. In this study, a closed-form 
(analytical) solution has been developed for the performance analysis 
of 2-D (two-dimensional) flat plate flying (moving) with a constant 
speed above free water surface. To do this, a lumped-vortex element 
has been utilized. To the best of the author’s knowledge, there is no 
such study in the literature. 
 
In the past, 2-D WIG that is moving over free surface has been 
investigated numerically in (Zong et al., 2012). It was reported in this 
study that the WIG effect is significant when the clearance (distance 
between WIG and free water surface) is small and the free surface 
behaves like a rigid wall at high velocity of WIG. The problem of 2-D 
biplanes (with WIG effect) working near a free water surface was 
solved by extending the classical lifting theory in (Liang et al. 2013a). 
In this study, 3-D (three-dimensional) problem was also solved. Some 
extensive numerical results were presented for the effect of clearance 
(height from free surface) and the distance between two foils on the 
results (such as, lift coefficient, drag coefficient, etc.). Both 2-D and 3-
D WIG problems were also solved (Barber, 2007). It was demonstrated 
that for low Froude numbers (Fr < 1), the surface deformation is a small 
depression of the surface beneath the foil. If the Froude number 
increases, a small change in the shape of the deformation is observed. 
At higher Froude numbers (for instance, say a Froude number of 14), 
the surface is not a depression anymore, but rather a rise beneath the 
foil. It was expressed that this result was also consistent with that of 
shown before (Grundy 1986). Matveev (2014) has described a coupled 
aero-hydrodynamic model for a ram wing moving above water under 
the condition of steady motion. The factors affecting the aerodynamic 
performance of a ram wing and the associated water surface 
deformations have been presented in the study. It has been shown 
that an extent of blockage of wing sides can drastically change the ram 
wing lifting performance. In another study, the effects of free surface 
both on 2-D airfoils and 3-D wings moving steadily over a free surface 
have been investigated by an iterative numerical method (Bal, 2016). 
It was concluded in the study that free surface can affect the airfoil or 
wing performance drastically if the clearance is sufficiently small. In 
addition, Bal (2018) showed that tapered 3-D wing with different swept 
angles and dihedral angles under WIG effect were investigated 
numerically. It was found that the shape of wing is important in terms 
of its performance under certain conditions. An in-depth review on the 
research and development of WIG effect technology can be found in 
Rozhdestvensky’s work (2006). 
 
There are also more advanced methods such as nonlinear numerical 
methods and CFD (Computational Fluid Dynamics) to solve the 
problem (Dogrul and Bal, 2016), (Kinaci and Bal, 2016), (Liang et al., 
2013b), (Zhi et al., 2019) (Hu et al., 2021). They generate quite realistic 
solutions. All these methods are robust and reliable. However,  they 
require computational time and memory. On the other hand, lumped 
vortex element is a very simple and effective representation of flat-
plate (Katz and Plotkin, 2001). The lumped vortex element 
automatically satisfies the Kutta condition at the trailing edge of flat-
plate and gives the exact solution of the problem (Katz, 2019). In this 
study the flat-plate moving steadily over a free surface have been 
represented by a lumped vortex element and closed-form solutions 
have been developed both for lift coefficients and free surface 
deformations. 
 
2. Mathematical Formulation 
 
A boundary value problem can be defined to solve the steady 
uniform flow passing a two-dimensional flat-plate flying over a 
free water surface. The flow field is assumed to be 
incompressible, inviscid, and irrotational. Therefore, potential 
flow theory can be applied. The x-axis is positive in the direction 

of uniform inflow (U) and the z-axis is positive upwards as shown 
in Figure 1. The flat-plate is located above calm free surface at z 
= h. The governing equation is the Laplace equation that the 

perturbation potential,  (in terms of the total potential,  ( = Ux 

+ ) ) should satisfy the continuity equation in the fluid domain: 

 
     ∇2(x, z) = 0                                                              (1) 

 
The following boundary conditions should also be satisfied by the 

perturbation potential function :  
 
Linearized free surface condition: The following combined 
(kinematic and dynamic) and linearized free surface equation 
should be satisfied by the perturbation potential function: 
 

∂2ϕ

∂x2
+ k0

∂ϕ

∂z
= 0 on z = 0                                 (2) 

 
Here, k0=g/U2 is the wave number, and g is the gravitational 
acceleration. The corresponding wave elevation in linearized 
form from Bernoulli equation can also be given as follows: 
 

     𝜁 = −
U

g

∂ϕ

∂x
                                                                   (3) 

 
Radiation condition: There should be no upstream waves. This 
means that the potential function should satisfy the following both 
equations: 
  

    lim
𝑥→−∞

𝜙 → 0  and  lim
𝑥→∞

𝜙 → M                                 (4) 

Here M is a finite number. Refer to (Bal and Kinnas, 2002) and 
(Bal et al., 2001) for details. 
 
The Kutta condition and kinematic condition on flat-plate are 
explained below. 
 

3. Method of Solution 
 
The flat-plate has been modeled by a lumped vortex element as 
mentioned above (Katz and Plotkin, 2001). To do this, the sum 
of the distributed vortices on flat-plate is replaced by a simple 
single (point) vortex with strength Γ. It is placed at the quarter-
chord point of the flat-plate and the kinematic boundary condition 
(i.e. the zero normal velocity condition) is satisfied at the three-
quarter chord point (Katz and Plotkin, 2001). The Kutta condition 
at the trailing edge of flat-plate is therefore satisfied 
automatically. The method of images was then utilized to satisfy 

the linearized free surface condition. The potential function 1 for 
a single vortex with strength Γ, located at z = h can be written as: 
 

ϕ1(x, z) = −
Γ

2π
tan−1 (

h − z

x
)                           (5) 

By using the following integral equation (Gradshteyn and Ryzhik, 
1965): 
 

∫ e−k(h−z) sin(kx) dk =
x

x2 + (h − z)2

∞

0

              (6) 

 

and taking the derivative of Equation (5) with respect to z, 1 can 
be re-written as: 

 

ϕ1(x, z) =
Γ

2π
∫

e−k(h−z) sin(kx)

k
dk

∞

0

                   (7) 
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It is assumed that the perturbation potential, Φ(x,z) is equal to  1 

+ 2 + 3. Here, 2 is the potential function due to the mirror image 
of single vortex with the same strength 𝝘 but in the opposite 

direction of rotation. It is located z=-h. Moreover, 3 is the 
gravitational wave potential and can be calculated by using the 
free surface condition, Equation (2), as follows: 
 

ϕ2(x, z) =
Γ

2π
tan−1 (

z+h

x
) = −

Γ

2π
∫

e−k(z+h) sin(kx)

k
dk

∞

0
  

          (8) 
 

ϕ3(x, z) =
Γ

π
∫

e−k(h−z) sin(kx)

k − k0

∞

0

dk                 (9) 

 
For the evaluation of definite integral I, in Equation (9), the 
method of solution given by Hess and Smith (1966) has been 
adopted here. The integral, “I” can now be written as: 

 

I = ∫
e−k(h−z) sin(kx)

k − k0
dk =

∞

0

b. c − a. d

c2 + d2

+ Cπe−k0(h−z) cos(k0x)                (10) 

 
Here, C is 2 for x→+∞ and it is 0 for x→-∞, to satisfy the radiation 
condition given in Equation (4). The calculated a, b, c and d 
coefficients are given in the Appendix. They are taken from 
(Hess and Smith, 1966). 
 
Now, if the kinematic boundary condition (zero normal velocity 
on flat-plate) is applied at three-quarter chord point of flat-plate, 
the following equation can be given as: 
 

∂ ( x= 𝑐
2  

cosα, z=h−c
2

 sinα)

∂z
= −U(sinα)(cosα)(11) 

and if the circulation value for lumped vortex element in an 
unbounded flow domain (no free surface case) 𝝘∞ is utilized: 
 

𝛤∞ = πUc(sinα)                                              (12)  
 

the following equation for circulation ratio can be obtained as: 
 
Γ

Γ∞
= (

cosα

c
) [

1

2

x

x2+(h−z)2 +
1

2

x

x2+(z+h)2 +

                     k0I]
−1

at (x = c

2
cosα,   z = h −  c

2
sinα)

 
  

   (13)  
 
Note that: 
 

Γ

Γ∞
=

CL

CL∞
                                                               (14) 

 
Here, CL is the lift coefficient of flat-plate with free surface effect 
and CL∞, the lift coefficient of flat-plate in unbounded flow domain 
(in case of no free surface effect), and CL∞=2π(sinα). 
 
Furthermore, the wave elevation on the free surface can be 
calculated from Equation (3) as follows: 
 

   
ζ(x;z=0)

c
=

Γ

𝜋𝑐
[

U

g

ℎ

x2+(h)2 + J/U]  at (x;  z = 0)   

        (15) 
where  
 

J =
𝑎. c + b. d

c2 + d2
− Cπe−k0(h) sin(k0x)                  (16) 

 
𝝘 (circulation with free surface efect) is calculated by Equation (13).

 

 
Figure 1. Definition of problem and coordinate system. 

 

4. Numerical Results and Discussion 
 
First, the method has been validated with the results of 
NACA0004 foil section given in (Zong et al., 2012). Thickness 
ratio of foil is 0.04. The angle of attack is (α=4⁰). Froude numbers 

(Frc =
U

√gc
), are 15 and 18, and the corresponding ratios of 

clearance of flat-plate from free surface (h/c) are 1.0 and 1.5, 
respectively. The lift coefficient CL by present method is 0.53 at 
Frc=18 and h/c=1.5 while it is given as 0.53 in (Zong et al., 2012). 

The lift coefficient CL by present method is 0.55 at Frc=15 and 
h/c=1.0 while it is 0.55 given in (Zong et al., 2012). This is a very 
strong validation of this analytical solution. 
 
Later, the lift coefficient ratios versus Froude number at different 
clearance ratios by the present method have been shown in 
Figure 2. While the free surface causes an increase in lift 
coefficients of flat-plate for lower Froude numbers, it causes a 
decrease for higher Froude numbers (say Frc > 1). Smaller 
clearance ratio makes this effect much clear. In Figure 3, the 
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variation of lift coefficient with Froude number as well as with the 
angle of attack of flat-plate is shown. Note that the differences 
due to angle of attack are indistinguishable. 
 

 
Figure 2. Lift coefficient ratio versus Froude number at different 
clearance ratios. 
 

 
Figure 3. Lift coefficient ratio versus Froude number at different 
angles of attack. 
 
In Figure 4, the change in wave elevation with Froude number 
has been demonstrated for a fixed clearance ratio at a fixed 
angle of attack. Note that as the Froude number increases, both 
the wave-height and wave-length become larger. This is 
consistent with those of given in (Larsson and Raven, 2010). In 
Figure 5, the change in wave elevation with clearance ratio has 
been demonstrated for a fixed Froude number and fixed angle of 
attack. As the clearance ratio decreases, the wave height 
increases but the wave-length becomes fixed. Finally, the effects 
of angle of attack on wave elevations have been shown in Figure 
6. An increase in angle of attack for a fixed Froude number and 
fixed clearance ratio causes an increase in wave height but not 
in wave-length, which remains constant. 

 
Figure 4. Variation of wave elevation with Froude number. 
 

 
Figure 5. Variation of wave elevation with clearance ratios. 
 

5. Conclusion 
 
A closed-form solution has been developed for a flat-plate flying 
(moving) with a constant speed under a free surface. A 
hydrodynamic analysis has then been carried out for this 
problem. The flat-plate has been represented by a lumped vortex 
element. To the best of author’s knowledge, there has been no 
such a study in literature before. An analytical solution has been 
obtained for lift coefficient and wave deformation on the free 
surface. The results by the present method were validated with 
those of another numerical method given in literature. The 
findings can be summarized as follows: 
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Figure 6. Variation of wave elevation with angle of attack. 
 
• Free surface causes an increase in lift coefficient of flat-plate 
for lower Froude numbers. On the other hand, it causes a 
decrease for higher Froude numbers, (say greater than 1).  
 
• An increase in Froude number causes an increase in wave 
height and wave-length. 
 
• A decrease in clearance ratio from free surface causes an 
increase in wave height, but not in wave-length. 
 
• An increase in angle of attack for a fixed Froude number and 
fixed clearance ratio from free surface causes an increase in 
wave height. But it causes no change in wave-length. 
 

6. Nomenclature 
 
c  chord 
CL  lift coefficient 
Frc  Froude number 
g  gravitational acceleration 
h  clearance between flat-plate & free surface 
k0   wave number 
p   ambient pressure 
U  uniform incoming velocity 
x   horizontal axis of coordinate system 
z   vertical axis of coordinate system 
α  angle of attack 
𝝘  circulation 

𝝓  perturbation potential 
Φ  total potential 
ρ   density of water 
ζ  wave elevation 
 

7. Appendix 
 

After the definitions of r = √x2 + (z − h)2 and β = tan−1 (
x

z−h
) , 

the following constants hold as given on pages 66-67 in the 
article by Hess and Smith (1966): 
 

a = −[ln(k0r) + 0.99999207γ + m1k0r(ln(k0r) cosβ − βsinβ)
+ γn1k0r cosβ

+ m2k0
2r2(ln(k0r) cos2β − βsin2β)

+ γn2k0
2r2cos2β

+ m3k0
3r3(ln(k0r) cos3β − βsin3β)

+ γn3k0
3r3cos3β

+ m4k0
4r4(ln(k0r) cos4β − βsin4β)

+ γn4k0
4r4cos4β + γn5k0

5r5cos5β 

        
 

b = −[β + m1k0r(ln(k0r) sinβ + βcosβ) + γn1k0r sinβ

+ m2k0
2r2(ln(k0r) sin2β + βcos2β)

+ γn2k0
2r2sin2β

+ m3k0
3r3(ln(k0r) sin3β + βcos3β)

+ γn3k0
3r3sin3β

+ m4k0
4r4(ln(k0r) sin4β + βcos4β)

+ γn4k0
4r4sin4β + γn5k0

5r5sin5β 
       
    

c = 1 + d1k0r cosβ + d2k0
2r2cos2β + d3k0

3r3cos3β

+ d4k0
4r4cos4β + d5k0

5r5cos5β

+ d6k0
6r6cos6β 

       
 

d = d1k0r sinβ + d2k0
2r2sin2β + d3k0

3r3sin3β + d4k0
4r4sin4β

+ d5k0
5r5sin5β + d6k0

6r6sin6β 
       
 
γ=0.5772156649 
 
m1=0.23721365, m2=0.0206543, m3=0.000763297,  
m4=0.0000097687 
 
n1=-1.49545886, n2=0.041806426, n3=-0.03000591, 
n4=0.0019387339, n5=-0.00051801555 
 
d1=-0.76273617, d2=0.28388363, d3=-0.066786033, 
d4=0.012982719, d5=-0.0008700861, d6=0.0002989204 
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